PredictionIO+Universal Recommender虽然可以帮助中小企业快速的搭建部署基于用户行为协同过滤的个性化推荐引擎,单纯从引擎层面来看,开发成本近乎于零,但仍然需要一些前提条件。比如说,组织内部最好已经搭建了较稳定的Hadoop,Spark集群,至少要拥有一部分熟悉Spark平台的开发和运维人员,否则会需要技术团队花费很长时间来踩坑,试错。

本文列举了一些PredictionIO+Universal Recommender的使用过程中会遇到的Spark平台相关的异常信息,以及其解决思路和最终的解决办法,供参考。

1,执行训练时,发生java.lang.StackOverflowError错误

这个问题比较简单,查看文档,执行训练时,通过参数指定内存大小可以避免该问题,例如:

pio train  -- --driver-memory 8g --executor-memory 8g --verbose

2,执行训练时,发生找不到EmptyRDD方法的错误

Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.SparkContext.emptyRDD(Lscala/reflect/ClassTag;)Lorg/apache/spark/rdd/EmptyRDD;
at com.actionml.URAlgorithm.getRanksRDD(URAlgorithm.scala:)
at com.actionml.URAlgorithm.calcAll(URAlgorithm.scala:)
at com.actionml.URAlgorithm.train(URAlgorithm.scala:)
at com.actionml.URAlgorithm.train(URAlgorithm.scala:)

这个是编译和执行环境的Spark版本不一致导致的。

Spark2.1.1 ,查看github上的spark源码发现
这个emptyRDD方法,虽然存在
/** Get an RDD that has no partitions or elements. */def emptyRDD[T: ClassTag]: RDD[T] = new EmptyRDD[T](this)
返回值类型和老版本相比,却发生了变化,不是EmptyRDD。所以在1.4.0下编译通过,2.1.1下执行失败。该方法的不同版本产生了不兼容。
如果采用我上一篇备忘录中所记述的方式修改过build.sbt,是可以避免这个问题的。
 
 
3,yarn和spark使用的jersey版本不一致的问题
[INFO] [ServerConnector] Started ServerConnector@bd93bc3{HTTP/1.1}{0.0.0.0:}
[INFO] [Server] Started @6428ms
Exception in thread "main" java.lang.NoClassDefFoundError: com/sun/jersey/api/client/config/ClientConfig
at org.apache.hadoop.yarn.client.api.TimelineClient.createTimelineClient(TimelineClient.java:)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.createTimelineClient(YarnClientImpl.java:)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.serviceInit(YarnClientImpl.java:)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:)
at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:)
at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: com.sun.jersey.api.client.config.ClientConfig
at java.net.URLClassLoader.findClass(URLClassLoader.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)
... more
修改方法:engine.json中的sparkConf中设置
"spark.hadoop.yarn.timeline-service.enabled": "false",
 
更深入了解此问题,参考:https://markobigdata.com/2016/08/01/apache-spark-2-0-0-installation-and-configuration/
 
 
4,yarn的空参数处理BUG
[INFO] [ContextHandler] Stopped o.s.j.s.ServletContextHandler@7772d266{/jobs,null,UNAVAILABLE}
[WARN] [YarnSchedulerBackend$YarnSchedulerEndpoint] Attempted to request executors before the AM has registered!
[WARN] [MetricsSystem] Stopping a MetricsSystem that is not running
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$.apply(YarnSparkHadoopUtil.scala:)
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$.apply(YarnSparkHadoopUtil.scala:)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:)
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.setEnvFromInputString(YarnSparkHadoopUtil.scala:)
at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$.apply(Client.scala:)
at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$.apply(Client.scala:)
at scala.Option.foreach(Option.scala:)
at org.apache.spark.deploy.yarn.Client.setupLaunchEnv(Client.scala:)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:)
at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:)
at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
是yarn的一个bug,无法正常处理空参数
 
解决方式:修改spark-env.sh,强制设置一个假参数,可以绕过这个问题
修改 spark/conf/spark-env.sh,增加下面这句话
export SPARK_YARN_USER_ENV="HADOOP_CONF_DIR=/home/hadoop/apache-hadoop/etc/hadoop"
5,yarn的软连接BUG
[WARN] [TaskSetManager] Lost task 3.0 in stage 173.0 (TID , bigdata01, executor ): java.lang.Error: Multiple ES-Hadoop versions detected in the classpath; please use only one
jar:file:/home/hadoop/apache-hadoop/hadoop/var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.-deps.jar
jar:file:/home/hadoop/apache-hadoop/hadoop-2.7./var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.-deps.jar at org.elasticsearch.hadoop.util.Version.<clinit>(Version.java:)
at org.elasticsearch.hadoop.rest.RestService.createWriter(RestService.java:)
at org.elasticsearch.spark.rdd.EsRDDWriter.write(EsRDDWriter.scala:)
at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$.apply(EsSpark.scala:)
at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$.apply(EsSpark.scala:)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:)
at org.apache.spark.scheduler.Task.run(Task.scala:)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)

这不知道算不算一个BUG,总之,yarn的配置中如果使用了软连接来指定hadoop文件夹的路径,将有可能发生此问题。参考 https://interset.zendesk.com/hc/en-us/articles/230751687-PhoenixToElasticSearchJob-Fails-with-Multiple-ES-Hadoop-versions-detected-in-the-classpath-

解决方式也很简单,nodemanager修改所有采用Hadoop文件夹的软连接的配置,改为真正的路径即可。

6,Spark的JOB执行出错

[WARN] [Utils] Service 'sparkDriver' could not bind on port . Attempting port .
[ERROR] [SparkContext] Error initializing SparkContext.
Exception in thread "main" java.net.BindException: Cannot assign requested address: Service 'sparkDriver' failed after retries (starting from )! Consider explicitly setting the appropriate port for the service 'sparkDriver' (for example spark.ui.port for SparkUI) to an available port or increasing spark.port.maxRetries.
at sun.nio.ch.Net.bind0(Native Method)
at sun.nio.ch.Net.bind(Net.java:)
at sun.nio.ch.Net.bind(Net.java:)
at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:)
at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:)
at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:)
at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:)
at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:)
at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:)
at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:)
at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:)
at io.netty.bootstrap.AbstractBootstrap$.run(AbstractBootstrap.java:)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:)
at io.netty.util.concurrent.SingleThreadEventExecutor$.run(SingleThreadEventExecutor.java:)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:)
at java.lang.Thread.run(Thread.java:)
这个错误,网上的有很多文章让修改spark-env.sh ,增加 export SPARK_LOCAL_IP="127.0.0.1"
但这些网文其实只适用于单机SPARK的情况。这个IP是SPARK回调本机的地址,所以应该设置为本机的IP地址(用ifconfig查看本机真实IP)
 

PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(3)的更多相关文章

  1. PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(2)

    1, 对Universal Recommender进行pio build成功,但是却提示No engine found Building and delpoying model [INFO] [Eng ...

  2. PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(1)

    1,PredictionIO如果用直接下载的0.11.0-incubating版本,存在一个HDFS配置相关的BUG 执行pio status命令时会发生如下的错误: -- ::, ERROR org ...

  3. SNF快速开发平台--规则引擎整体介绍及使用说明书

    一.设计目标 a)规则引擎语法能够满足分单,计费,WMS策略的配置要求.语法是一致和统一的 b)能够在不修改规则引擎模块的情况下,加入任意一个新的规则:实现上述需求之外的规则配置需求 c)运算速度快 ...

  4. SNF快速开发平台--规则引擎在程序当中如何调用

    规则定义完如何在程序当中进行使用呢? 其时很简单,只需要如下代码就可以调用程序: 规则定义: 调用代码: #region 演示2:生成左表数据(规则) POST: /api/DEMO/DemoSing ...

  5. SNF快速开发平台--规则引擎介绍和使用文档

    设计目标: a) 规则引擎语法能够满足分单,计费,WMS策略的配置要求.语法是一致和统一的 b) 能够在不修改规则引擎模块的情况下,加入任意一个新的规则:实现上述需求之外的规则配置需求 c) 运算速度 ...

  6. Atitit 快速开发的推荐技术标准化 规范 大原则

    Atitit 快速开发的推荐技术标准化 规范 大原则 1. 如何评估什么样的技术适合快速开发??1 1.1. (重要)判断语言层次..层次越高开发效率越高  4gl  dsl> 3.5gl &g ...

  7. 使用ASP.NET MVC、Rabbit WeixinSDK和Azure快速开发部署微信后台

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:公众号后台系统和数据都基本准备妥当了,可以来分享下我是如何开发本微信公众号的后台系统了 ...

  8. 4款java快速开发平台推荐

    JBoss Seam JBoss Seam,算得上是Java开源框架里面最优秀的快速开发框架之一. Seam框架非常出色,尤其是他的组件机制设计的很有匠心,真不愧是Gavin King精心打造的框架了 ...

  9. UWP简单示例(三):快速开发2D游戏引擎

    准备 IDE:VisualStudio 2015 Language:VB.NET/C# 图形API:Win2D MSDN教程:UWP游戏开发 游戏开发涉及哪些技术? 游戏开发是一门复杂的艺术,编码方面 ...

随机推荐

  1. C语言之for循环

    #include<stdio.h>#include<stdlib.h>#include<time.h>int main(){ int i; for(i=1;i< ...

  2. js 事件冒泡和事件捕获

    事件流:指的是网页中元素接受事件的顺序,它是一个概念,而不是具体的实际的东西 事件冒泡:指的是内层元素的事件,会触发包含着此元素的外层元素的事件,触发的顺序是:由内而外的 例如: <!DOCTY ...

  3. Java基础回顾(3)

    数组:用一种数据类型的集合 ★数组元素下标从0开始. 数组的复制.扩容: ①.System.arraycopy(源数组, 源数组的初始下标,                     目标数组, 目标数 ...

  4. 用sort()按小到大排序的方法:

    例子:function compare(value1,value2){ if(value1<value2){ return -1; }else if(value1==value2){ retur ...

  5. java的基本知识导航

    java基本知识 备注:本次主要是思维导图,就是简单的说一下,只会扩展导图中的java关键字,其他以后再写 1.思维导图 2.java关键字 关键字 描述  abstract 抽象方法,抽象类的修饰符 ...

  6. dataset的使用和图片延时加载的实现

    首先,先介绍一下关于javascript中dataset属性..html5中可以使用data-前缀设置我们需要的自定义属性,来进行一些数据的存放.下面是元素应用data属性的一个例子:~~~~~~~~ ...

  7. 微信JS-SDK选择相册或拍照并上传PHP实现

    理解:微信上传接口是拍照,或者选择本地照片,上传到微信的服务器,获取到一个id,通过token与这个id获取到图片,保存到服务器即可. 效果 通过微信js接口,调用底层程序. 需要引入js文件,并进行 ...

  8. C#访问C++动态分配的数组指针

    项目中遇到C#调用C++算法库的情况,C++内部运算结果返回矩形坐标数组(事先长度未知且不可预计),下面方法适用于访问C++内部分配的任何结构体类型数组.当时想当然的用ref array[]传递参数, ...

  9. Python3实现简单可学习的手写体识别

    0.目录 1.前言 2.通过pymssql与数据库的交互 3.通过pyqt与界面的交互 4.UI与数据库的交互 5.最后的main主函数 1.前言 版本:Python3.6.1 + PyQt5 + S ...

  10. while(true)应用 之 实现自己的消息队列

    早些时候,一直有个疑问,就是比如你从前端发一个操作之后,后台为什么能够及时处理你的东西呢?当然了,我说的不是,服务器为什么能够立即接收到你的请求之类高大上的东西.而是,假设你用异步去做一个事情,而后台 ...