PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(3)
PredictionIO+Universal Recommender虽然可以帮助中小企业快速的搭建部署基于用户行为协同过滤的个性化推荐引擎,单纯从引擎层面来看,开发成本近乎于零,但仍然需要一些前提条件。比如说,组织内部最好已经搭建了较稳定的Hadoop,Spark集群,至少要拥有一部分熟悉Spark平台的开发和运维人员,否则会需要技术团队花费很长时间来踩坑,试错。
本文列举了一些PredictionIO+Universal Recommender的使用过程中会遇到的Spark平台相关的异常信息,以及其解决思路和最终的解决办法,供参考。
1,执行训练时,发生java.lang.StackOverflowError错误
这个问题比较简单,查看文档,执行训练时,通过参数指定内存大小可以避免该问题,例如:
pio train -- --driver-memory 8g --executor-memory 8g --verbose
2,执行训练时,发生找不到EmptyRDD方法的错误
Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.SparkContext.emptyRDD(Lscala/reflect/ClassTag;)Lorg/apache/spark/rdd/EmptyRDD;
at com.actionml.URAlgorithm.getRanksRDD(URAlgorithm.scala:)
at com.actionml.URAlgorithm.calcAll(URAlgorithm.scala:)
at com.actionml.URAlgorithm.train(URAlgorithm.scala:)
at com.actionml.URAlgorithm.train(URAlgorithm.scala:)
这个是编译和执行环境的Spark版本不一致导致的。
/** Get an RDD that has no partitions or elements. */def emptyRDD[T: ClassTag]: RDD[T] = new EmptyRDD[T](this)
[INFO] [ServerConnector] Started ServerConnector@bd93bc3{HTTP/1.1}{0.0.0.0:}
[INFO] [Server] Started @6428ms
Exception in thread "main" java.lang.NoClassDefFoundError: com/sun/jersey/api/client/config/ClientConfig
at org.apache.hadoop.yarn.client.api.TimelineClient.createTimelineClient(TimelineClient.java:)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.createTimelineClient(YarnClientImpl.java:)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.serviceInit(YarnClientImpl.java:)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:)
at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:)
at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: com.sun.jersey.api.client.config.ClientConfig
at java.net.URLClassLoader.findClass(URLClassLoader.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)
... more
[INFO] [ContextHandler] Stopped o.s.j.s.ServletContextHandler@7772d266{/jobs,null,UNAVAILABLE}
[WARN] [YarnSchedulerBackend$YarnSchedulerEndpoint] Attempted to request executors before the AM has registered!
[WARN] [MetricsSystem] Stopping a MetricsSystem that is not running
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$.apply(YarnSparkHadoopUtil.scala:)
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$.apply(YarnSparkHadoopUtil.scala:)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:)
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.setEnvFromInputString(YarnSparkHadoopUtil.scala:)
at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$.apply(Client.scala:)
at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$.apply(Client.scala:)
at scala.Option.foreach(Option.scala:)
at org.apache.spark.deploy.yarn.Client.setupLaunchEnv(Client.scala:)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:)
at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:)
at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
export SPARK_YARN_USER_ENV="HADOOP_CONF_DIR=/home/hadoop/apache-hadoop/etc/hadoop"
[WARN] [TaskSetManager] Lost task 3.0 in stage 173.0 (TID , bigdata01, executor ): java.lang.Error: Multiple ES-Hadoop versions detected in the classpath; please use only one
jar:file:/home/hadoop/apache-hadoop/hadoop/var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.-deps.jar
jar:file:/home/hadoop/apache-hadoop/hadoop-2.7./var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.-deps.jar at org.elasticsearch.hadoop.util.Version.<clinit>(Version.java:)
at org.elasticsearch.hadoop.rest.RestService.createWriter(RestService.java:)
at org.elasticsearch.spark.rdd.EsRDDWriter.write(EsRDDWriter.scala:)
at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$.apply(EsSpark.scala:)
at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$.apply(EsSpark.scala:)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:)
at org.apache.spark.scheduler.Task.run(Task.scala:)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)
这不知道算不算一个BUG,总之,yarn的配置中如果使用了软连接来指定hadoop文件夹的路径,将有可能发生此问题。参考 https://interset.zendesk.com/hc/en-us/articles/230751687-PhoenixToElasticSearchJob-Fails-with-Multiple-ES-Hadoop-versions-detected-in-the-classpath-
解决方式也很简单,nodemanager修改所有采用Hadoop文件夹的软连接的配置,改为真正的路径即可。
6,Spark的JOB执行出错
[WARN] [Utils] Service 'sparkDriver' could not bind on port . Attempting port .
[ERROR] [SparkContext] Error initializing SparkContext.
Exception in thread "main" java.net.BindException: Cannot assign requested address: Service 'sparkDriver' failed after retries (starting from )! Consider explicitly setting the appropriate port for the service 'sparkDriver' (for example spark.ui.port for SparkUI) to an available port or increasing spark.port.maxRetries.
at sun.nio.ch.Net.bind0(Native Method)
at sun.nio.ch.Net.bind(Net.java:)
at sun.nio.ch.Net.bind(Net.java:)
at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:)
at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:)
at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:)
at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:)
at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:)
at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:)
at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:)
at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:)
at io.netty.bootstrap.AbstractBootstrap$.run(AbstractBootstrap.java:)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:)
at io.netty.util.concurrent.SingleThreadEventExecutor$.run(SingleThreadEventExecutor.java:)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:)
at java.lang.Thread.run(Thread.java:)
PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(3)的更多相关文章
- PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(2)
1, 对Universal Recommender进行pio build成功,但是却提示No engine found Building and delpoying model [INFO] [Eng ...
- PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(1)
1,PredictionIO如果用直接下载的0.11.0-incubating版本,存在一个HDFS配置相关的BUG 执行pio status命令时会发生如下的错误: -- ::, ERROR org ...
- SNF快速开发平台--规则引擎整体介绍及使用说明书
一.设计目标 a)规则引擎语法能够满足分单,计费,WMS策略的配置要求.语法是一致和统一的 b)能够在不修改规则引擎模块的情况下,加入任意一个新的规则:实现上述需求之外的规则配置需求 c)运算速度快 ...
- SNF快速开发平台--规则引擎在程序当中如何调用
规则定义完如何在程序当中进行使用呢? 其时很简单,只需要如下代码就可以调用程序: 规则定义: 调用代码: #region 演示2:生成左表数据(规则) POST: /api/DEMO/DemoSing ...
- SNF快速开发平台--规则引擎介绍和使用文档
设计目标: a) 规则引擎语法能够满足分单,计费,WMS策略的配置要求.语法是一致和统一的 b) 能够在不修改规则引擎模块的情况下,加入任意一个新的规则:实现上述需求之外的规则配置需求 c) 运算速度 ...
- Atitit 快速开发的推荐技术标准化 规范 大原则
Atitit 快速开发的推荐技术标准化 规范 大原则 1. 如何评估什么样的技术适合快速开发??1 1.1. (重要)判断语言层次..层次越高开发效率越高 4gl dsl> 3.5gl &g ...
- 使用ASP.NET MVC、Rabbit WeixinSDK和Azure快速开发部署微信后台
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:公众号后台系统和数据都基本准备妥当了,可以来分享下我是如何开发本微信公众号的后台系统了 ...
- 4款java快速开发平台推荐
JBoss Seam JBoss Seam,算得上是Java开源框架里面最优秀的快速开发框架之一. Seam框架非常出色,尤其是他的组件机制设计的很有匠心,真不愧是Gavin King精心打造的框架了 ...
- UWP简单示例(三):快速开发2D游戏引擎
准备 IDE:VisualStudio 2015 Language:VB.NET/C# 图形API:Win2D MSDN教程:UWP游戏开发 游戏开发涉及哪些技术? 游戏开发是一门复杂的艺术,编码方面 ...
随机推荐
- Git命令行对照表
git init # 初始化本地git仓库(创建新仓库) git config --global user.name "xxx" # 配置用户名 git config --glob ...
- C语言之循环次数
#include<stdio.h>int main(){int num,count=0,i=0,ret=0;scanf("%d",&num);while(num ...
- 深度解析continue,break和return
continue,break和return是Java中的关键字,在方法体内的流程控制中使用频率较高. 在现实中,经常会有同学在使用中产生混淆,从而使得流程控制语句发生混乱.在这里,我结合个人的使用经历 ...
- 算法训练 最大的算式 DP
算法训练 最大的算式 时间限制:1.0s 内存限制:256.0MB 问题描述 题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果 ...
- 进程互斥(锁)------------------>一个坑
进程互斥锁 引入: 进程之间数据不共享,但是共享同一套文件系统(如硬盘.键盘.cpu等),所以访问同一个文件,或同一个打印终端,是没有问题的,竞争带来的结果就是错乱,如何控制,就是加锁处理,即进程加锁 ...
- JSON序列化时消除空格
使用 python 序列化时,通常使用 json.dumps()生成 json,但是会在key和value之间默认给你加上一个空格.传参时可能会应为这个空格导致服务端解析失败. 之前做接口测试时,就遇 ...
- 【GISer&&Painter】GISer
基于上一篇OpenGL的渲染原理,这两周又陆续接触了一些关于WebGL绘图的一些内容,因为刚入门,很多东西又很晦涩,所以特意花了小半天的时间整理了一下,特此记录. 一 画布和画笔:创建Canvas ...
- 运行期以索引获取tuple元素-C++11之2
//运行期以索引获取tuple元素-C++11之2 //需支持C++11及以上标准的编译器,VS2017 15.5.x.CodeBlocks 16.01 gcc 7.2 //参见<深入应用C++ ...
- 怎样解决jsp:include标签在包括html文件时遇到的乱码问题
在一个JSP页面中,经常须要包括还有一个文件,JSP为我们提供了jsp:include标签能够完毕这个功能,比方:<jsp:include page="some.jsp"&g ...
- String 经常用法最优算法实现总结 (二)
1. String getOrderedString(boolean isDuplicated, String - str) 说明: Orders all characters in the inpu ...