PredictionIO+Universal Recommender虽然可以帮助中小企业快速的搭建部署基于用户行为协同过滤的个性化推荐引擎,单纯从引擎层面来看,开发成本近乎于零,但仍然需要一些前提条件。比如说,组织内部最好已经搭建了较稳定的Hadoop,Spark集群,至少要拥有一部分熟悉Spark平台的开发和运维人员,否则会需要技术团队花费很长时间来踩坑,试错。

本文列举了一些PredictionIO+Universal Recommender的使用过程中会遇到的Spark平台相关的异常信息,以及其解决思路和最终的解决办法,供参考。

1,执行训练时,发生java.lang.StackOverflowError错误

这个问题比较简单,查看文档,执行训练时,通过参数指定内存大小可以避免该问题,例如:

pio train  -- --driver-memory 8g --executor-memory 8g --verbose

2,执行训练时,发生找不到EmptyRDD方法的错误

Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.SparkContext.emptyRDD(Lscala/reflect/ClassTag;)Lorg/apache/spark/rdd/EmptyRDD;
at com.actionml.URAlgorithm.getRanksRDD(URAlgorithm.scala:)
at com.actionml.URAlgorithm.calcAll(URAlgorithm.scala:)
at com.actionml.URAlgorithm.train(URAlgorithm.scala:)
at com.actionml.URAlgorithm.train(URAlgorithm.scala:)

这个是编译和执行环境的Spark版本不一致导致的。

Spark2.1.1 ,查看github上的spark源码发现
这个emptyRDD方法,虽然存在
/** Get an RDD that has no partitions or elements. */def emptyRDD[T: ClassTag]: RDD[T] = new EmptyRDD[T](this)
返回值类型和老版本相比,却发生了变化,不是EmptyRDD。所以在1.4.0下编译通过,2.1.1下执行失败。该方法的不同版本产生了不兼容。
如果采用我上一篇备忘录中所记述的方式修改过build.sbt,是可以避免这个问题的。
 
 
3,yarn和spark使用的jersey版本不一致的问题
[INFO] [ServerConnector] Started ServerConnector@bd93bc3{HTTP/1.1}{0.0.0.0:}
[INFO] [Server] Started @6428ms
Exception in thread "main" java.lang.NoClassDefFoundError: com/sun/jersey/api/client/config/ClientConfig
at org.apache.hadoop.yarn.client.api.TimelineClient.createTimelineClient(TimelineClient.java:)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.createTimelineClient(YarnClientImpl.java:)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.serviceInit(YarnClientImpl.java:)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:)
at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:)
at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: com.sun.jersey.api.client.config.ClientConfig
at java.net.URLClassLoader.findClass(URLClassLoader.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)
... more
修改方法:engine.json中的sparkConf中设置
"spark.hadoop.yarn.timeline-service.enabled": "false",
 
更深入了解此问题,参考:https://markobigdata.com/2016/08/01/apache-spark-2-0-0-installation-and-configuration/
 
 
4,yarn的空参数处理BUG
[INFO] [ContextHandler] Stopped o.s.j.s.ServletContextHandler@7772d266{/jobs,null,UNAVAILABLE}
[WARN] [YarnSchedulerBackend$YarnSchedulerEndpoint] Attempted to request executors before the AM has registered!
[WARN] [MetricsSystem] Stopping a MetricsSystem that is not running
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$.apply(YarnSparkHadoopUtil.scala:)
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$.apply(YarnSparkHadoopUtil.scala:)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:)
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.setEnvFromInputString(YarnSparkHadoopUtil.scala:)
at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$.apply(Client.scala:)
at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$.apply(Client.scala:)
at scala.Option.foreach(Option.scala:)
at org.apache.spark.deploy.yarn.Client.setupLaunchEnv(Client.scala:)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:)
at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:)
at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
是yarn的一个bug,无法正常处理空参数
 
解决方式:修改spark-env.sh,强制设置一个假参数,可以绕过这个问题
修改 spark/conf/spark-env.sh,增加下面这句话
export SPARK_YARN_USER_ENV="HADOOP_CONF_DIR=/home/hadoop/apache-hadoop/etc/hadoop"
5,yarn的软连接BUG
[WARN] [TaskSetManager] Lost task 3.0 in stage 173.0 (TID , bigdata01, executor ): java.lang.Error: Multiple ES-Hadoop versions detected in the classpath; please use only one
jar:file:/home/hadoop/apache-hadoop/hadoop/var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.-deps.jar
jar:file:/home/hadoop/apache-hadoop/hadoop-2.7./var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.-deps.jar at org.elasticsearch.hadoop.util.Version.<clinit>(Version.java:)
at org.elasticsearch.hadoop.rest.RestService.createWriter(RestService.java:)
at org.elasticsearch.spark.rdd.EsRDDWriter.write(EsRDDWriter.scala:)
at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$.apply(EsSpark.scala:)
at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$.apply(EsSpark.scala:)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:)
at org.apache.spark.scheduler.Task.run(Task.scala:)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)

这不知道算不算一个BUG,总之,yarn的配置中如果使用了软连接来指定hadoop文件夹的路径,将有可能发生此问题。参考 https://interset.zendesk.com/hc/en-us/articles/230751687-PhoenixToElasticSearchJob-Fails-with-Multiple-ES-Hadoop-versions-detected-in-the-classpath-

解决方式也很简单,nodemanager修改所有采用Hadoop文件夹的软连接的配置,改为真正的路径即可。

6,Spark的JOB执行出错

[WARN] [Utils] Service 'sparkDriver' could not bind on port . Attempting port .
[ERROR] [SparkContext] Error initializing SparkContext.
Exception in thread "main" java.net.BindException: Cannot assign requested address: Service 'sparkDriver' failed after retries (starting from )! Consider explicitly setting the appropriate port for the service 'sparkDriver' (for example spark.ui.port for SparkUI) to an available port or increasing spark.port.maxRetries.
at sun.nio.ch.Net.bind0(Native Method)
at sun.nio.ch.Net.bind(Net.java:)
at sun.nio.ch.Net.bind(Net.java:)
at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:)
at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:)
at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:)
at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:)
at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:)
at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:)
at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:)
at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:)
at io.netty.bootstrap.AbstractBootstrap$.run(AbstractBootstrap.java:)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:)
at io.netty.util.concurrent.SingleThreadEventExecutor$.run(SingleThreadEventExecutor.java:)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:)
at java.lang.Thread.run(Thread.java:)
这个错误,网上的有很多文章让修改spark-env.sh ,增加 export SPARK_LOCAL_IP="127.0.0.1"
但这些网文其实只适用于单机SPARK的情况。这个IP是SPARK回调本机的地址,所以应该设置为本机的IP地址(用ifconfig查看本机真实IP)
 

PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(3)的更多相关文章

  1. PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(2)

    1, 对Universal Recommender进行pio build成功,但是却提示No engine found Building and delpoying model [INFO] [Eng ...

  2. PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(1)

    1,PredictionIO如果用直接下载的0.11.0-incubating版本,存在一个HDFS配置相关的BUG 执行pio status命令时会发生如下的错误: -- ::, ERROR org ...

  3. SNF快速开发平台--规则引擎整体介绍及使用说明书

    一.设计目标 a)规则引擎语法能够满足分单,计费,WMS策略的配置要求.语法是一致和统一的 b)能够在不修改规则引擎模块的情况下,加入任意一个新的规则:实现上述需求之外的规则配置需求 c)运算速度快 ...

  4. SNF快速开发平台--规则引擎在程序当中如何调用

    规则定义完如何在程序当中进行使用呢? 其时很简单,只需要如下代码就可以调用程序: 规则定义: 调用代码: #region 演示2:生成左表数据(规则) POST: /api/DEMO/DemoSing ...

  5. SNF快速开发平台--规则引擎介绍和使用文档

    设计目标: a) 规则引擎语法能够满足分单,计费,WMS策略的配置要求.语法是一致和统一的 b) 能够在不修改规则引擎模块的情况下,加入任意一个新的规则:实现上述需求之外的规则配置需求 c) 运算速度 ...

  6. Atitit 快速开发的推荐技术标准化 规范 大原则

    Atitit 快速开发的推荐技术标准化 规范 大原则 1. 如何评估什么样的技术适合快速开发??1 1.1. (重要)判断语言层次..层次越高开发效率越高  4gl  dsl> 3.5gl &g ...

  7. 使用ASP.NET MVC、Rabbit WeixinSDK和Azure快速开发部署微信后台

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:公众号后台系统和数据都基本准备妥当了,可以来分享下我是如何开发本微信公众号的后台系统了 ...

  8. 4款java快速开发平台推荐

    JBoss Seam JBoss Seam,算得上是Java开源框架里面最优秀的快速开发框架之一. Seam框架非常出色,尤其是他的组件机制设计的很有匠心,真不愧是Gavin King精心打造的框架了 ...

  9. UWP简单示例(三):快速开发2D游戏引擎

    准备 IDE:VisualStudio 2015 Language:VB.NET/C# 图形API:Win2D MSDN教程:UWP游戏开发 游戏开发涉及哪些技术? 游戏开发是一门复杂的艺术,编码方面 ...

随机推荐

  1. AJAX技术之网易滚动新闻的简单实现(附源码)--AJAX

    1.AJAX简介: AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法 ...

  2. CentOS7 64位 安装MySQL5.7

    安装环境:CentOS7 64位 MINI版,安装MySQL5.7 1.配置YUM源 在MySQL官网中下载YUM源rpm安装包:http://dev.mysql.com/downloads/repo ...

  3. openstack Keystone验证服务集群

    #Keystone验证服务群集 openstack pike 部署 目录汇总 http://www.cnblogs.com/elvi/p/7613861.html ##.Keystone验证服务集群 ...

  4. URL, URI, URN三者区别

    URL和URN都是URI的子集 URL和URN都是URI,但是URI不一定是URL或者URN URI,URL,URN关系图 关于URL: URL是URI的一种,不仅标识了Web 资源,还指定了操作或者 ...

  5. 数据库索引------Btree索引的使用限制

    1.如果不是按照索引最左列开始查找,则无法使用索引. 比如说id+name   那么是name+id 的话  ,这个索引则无法使用. 2.使用索引时不能跳过索引中的列.   如果是id+name+ag ...

  6. git操作之上传gitthub

    push 失败解决方法: 分支操作: 分支操作之覆盖: 主master操作:

  7. 在外围获取APP的机密信息

    叶孤城原创,转载须授权. 小白:偷窥狂,不,叶城主,怎么还不发起攻击,还在外围搞什么? 叶孤城:闭嘴,能外围解决的问题就不要破解,你以为你会天外飞仙啊! 小白:-- 本文解决一个问题:通过抓包分析出重 ...

  8. 最全最详细:ubuntu16.04下内核编译以及设备驱动程序的编写(针对新手而写)

    写在前面:本博客为本人原创,转载请注明出处!同时,本博客严禁任何下载站随意抓取!!! 本博客唯一合法URL: 总体考虑 要去写设备驱动程序,说白了就三大步骤:下载内核源码构建内核源码树(也就是下载你的 ...

  9. 源码安装pipelineDB之CentOS7

    源码下载:https://github.com/pipelinedb/pipelinedb github上面README只要是针对ubunte来安装的. 在正式安装前,要先下载好依赖的包: check ...

  10. MySQL系列:基于binlog的增量订阅与消费(一)

    在一些业务场景中,像在数据分析中我们有时候需要捕获数据变化(CDC):在数据审计中,我们也往往需要知道数据从这个点到另一个点的变化:同样在实时分析中,我们有时候需要看到某个值得实时变化等. 要解决以上 ...