转载请注明出处:http://www.cnblogs.com/willnote/p/6746668.html

图示说明

  • 用一个3x3的网格在一个28x28的图像上做切片并移动

  • 移动到边缘上的时候,如果不超出边缘,3x3的中心就到不了边界

  • 因此得到的内容就会缺乏边界的一圈像素点,只能得到26x26的结果

  • 而可以越过边界的情况下,就可以让3x3的中心到达边界的像素点

  • 超出部分的矩阵补零

代码说明

根据tensorflow中的conv2d函数,我们先定义几个基本符号

  • 输入矩阵 W×W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样,不多解释。

  • filter矩阵 F×F,卷积核

  • stride值 S,步长

  • 输出宽高为 new_height、new_width

在Tensorflow中对padding定义了两种取值:VALID、SAME。下面分别就这两种定义进行解释说明。

VALID

new_height = new_width = (W – F + 1) / S  #结果向上取整
  • 含义:new_height为输出矩阵的高度
  • 说明:VALID方式不会在原有输入矩阵的基础上添加新的值,输出矩阵的大小直接按照公式计算即可

SAME

new_height = new_width = W / S    #结果向上取整
  • 含义:new_height为输出矩阵的高度
  • 说明:对W/S的结果向上取整得到W"包含"多少个S
pad_needed_height = (new_height – 1)  × S + F - W
  • 含义:pad_needed_height为输入矩阵需要补充的高度
  • 说明:因为new_height是向上取整的结果,所以先-1得到W可以完全包裹住S的块数,之后乘以S得到这些块数的像素点总和,再加上filer的F并减去W,即得到在高度上需要对W补充多少个像素点才能满足new_height的需求
pad_top = pad_needed_height / 2    #结果取整
  • 含义:pad_top为输入矩阵上方需要添加的高度
  • 说明:将上一步得到的pad_needed_height除以2作为矩阵上方需要扩充0的像素点数
pad_bottom = pad_needed_height - pad_top
  • 含义:pad_bottom为输入矩阵下方需要添加的高度
  • 说明:pad_needed_height减去pad_top的剩余部分补充到矩阵下方

以此类推,在宽度上需要pad的像素数和左右分别添加的像素数为

pad_needed_width = (new_width – 1)  × S + F - W
pad_left = pad_needed_width / 2 #结果取整
pad_right = pad_needed_width – pad_left

源码示例

tensorflow/python/ops/nn_ops.py中关于padding的源码部分

参考

  1. Tensorflow中卷积的padding操作
  2. TensorFlow 深度学习笔记 卷积神经网络
  3. Tensorflow官方API padding说明

Tensorflow中的padding操作的更多相关文章

  1. 记录:TensorFlow 中的 padding 方式

    TensorFlow 中卷积操作和池化操作中都有一个参数 padding,其可选值有 ['VALID', 'SAME']. 在 TensorFlow 文档中只是给出了输出张量的维度计算方式,但是并没有 ...

  2. Tensorflow中Tensor对象的常用方法(持续更新)

    Tensor是Tensorflow中重要的对象.下面是Tensor的常用方法,后面还会写一篇随笔记录Variable的用法. 1. 生成一个(常)Tensor对象 >>>A = tf ...

  3. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

  4. 【TensorFlow】一文弄懂CNN中的padding参数

    在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和 ...

  5. 基于TensorFlow理解CNN中的padding参数

    1 TensorFlow中用到padding的地方 在TensorFlow中用到padding的地方主要有tf.nn.conv2d(),tf.nn.max_pool(),tf.nn.avg_pool( ...

  6. Tensorflow中卷积的padding方式

    根据tensorflow中的Conv2D函数,先定义几个基本符号: 输入矩阵W*W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样 filter矩阵F*F,卷积核 stride值S,步长 输出 ...

  7. python/numpy/tensorflow中,对矩阵行列操作,下标是怎么回事儿?

    Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor. 用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量 ...

  8. 第二十二节,TensorFlow中的图片分类模型库slim的使用、数据集处理

    Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦 ...

  9. 第十八节,TensorFlow中使用批量归一化(BN)

    在深度学习章节里,已经介绍了批量归一化的概念,详情请点击这里:第九节,改善深层神经网络:超参数调试.正则化以优化(下) 神经网络在进行训练时,主要是用来学习数据的分布规律,如果数据的训练部分和测试部分 ...

随机推荐

  1. 【Egret】web版本报错:XMLHttpRequest cannot load

    [Egret] web发行版本报错:XMLHttpRequest cannot load file:///C:/Users/PX/Documents/EgretProjects/Xt1/resourc ...

  2. C#研究OpenXML之路(3-OpenXMLSDKToolV25.msi)

    一.OpenXMLSDKToolV25.msi 看了几天的OpenXml,感觉如果完全手写代码,将会是一件非常苦逼的事情,即要分析对应xlsx文件层次结构,以及包含的xml文件的xml标签结构,还要关 ...

  3. iOS 文件下载和打开

    最近的项目要用到一个在线报告的下载,于是完成后自己在理一下思路,大体的实现了我要得需求. 话不多说,直接上代码 首先,取到网络文件的链接,进行判段是否需求再次下载还是直接打开 #pragma mark ...

  4. 通过js获取元素css3的transform rotate旋转角度方法

    我们再试用jquery获取样式的时候是通过$('domName').css('transform'):的方式来获取元素的css样式,但是通过它获取到的css3的transform属性是以矩阵的方式呈现 ...

  5. mysql 分析第一步

    分析mysql 慢的原因    思路 通过脚本观察 status -->看是否会出现周期性波动 一般由访高峰或缓存崩溃引起   加缓存更改 缓存失效策略 使失效时间分散 或夜间定时失效 --&g ...

  6. .Net Core MVC 过滤器(一)

    1.过滤器   过滤器运行在MVC Action Invocation Pipeline(MVC Action 请求管道),我们称它为Filter Pipleline(过滤器管道),Filter Pi ...

  7. elasticsearch5.3安装插件head

    1.下载并配置nodejscd /usr/local/src/wget https://nodejs.org/dist/v6.9.5/node-v6.9.5-linux-x64.tar.xz & ...

  8. jquery如何设置html众标签中的值

    $("img").attr("src",some_url);//jquery设置img标签中的src值 $("#user").val(&qu ...

  9. URL解析器urllib2

    urllib2是Python的一个库(不用下载,安装,只需要使用时导入import urllib2)它提供了一系列用于操作URL的功能. urlopen urllib2.urlopen可以接受Requ ...

  10. iOS 关于定位你该注意的那些事

      其实现在对于一个APP来说,定位用户的位置是件很容易的事情,有三种解决方案供您选择: (1)原生 (2)高德地图 (3)百度地图 1.解决方案的选择   其实单说iOS开发来说应用哪种方案都无所谓 ...