感知机和线性单元的C#版本
本文的原版Python代码参考了以下文章:
零基础入门深度学习(1) - 感知器
零基础入门深度学习(2) - 线性单元和梯度下降
在机器学习如火如荼的时代,Python大行其道,几乎所有的机器学习的程序都是Python写的。
.Net的机器学习库有,但是非常少,Tensorflow也暂时并不支持.Net.
写这篇文章的目的,也只是想尝试一下,通过将Python的源代码改写成Net来更加深入的理解感知机的原理。
毕竟在改写的时候,每一行代码都必须研究一下,很多知识是无法混过去的。

感知机的模型其实就这么简单,本文也不是深度学习的科普,所以具体不解释。
(题外话 .Net Core 暂时没有System.Math的支持,对于一些简单的机器学习,改写起来没有问题,但是稍微复杂一些就无能为力了。)
一个感知机的代码大概是这个样子的,这里矩阵的实现还是很原始的List<List>的方法不知道是否有其他写法。
代码的话,如果你看了上面的文章,就很容易理解了。
文章只有标题,因为我不知道我看到的是不是原文,所以请大家自行百度。
using System;
using System.Collections.Generic;
public class Perceptron
{
private float bias = 0.0f;
private List<float> weights = new List<float>();
private Func<float, float> activator;
public Perceptron(int input_num, Func<float, float> Activator)
{
for (int i = 0; i < input_num; i++)
{
weights.Add(0.0f);
}
activator = Activator;
bias = 0.0f;
}
public override string ToString()
{
var s = "weights:";
foreach (var weight in weights)
{
s += weight + System.Environment.NewLine;
}
s += "bias:" + this.bias;
return s;
}
public float Predict(List<float> input_vec)
{
//这里规定向量长度和权重长度相等
float sum = 0.0f;
for (int i = 0; i < weights.Count; i++)
{
sum += input_vec[i] * weights[i];
}
//偏置项
sum += bias;
return activator(sum);
}
public void train(List<List<float>> Input_vecs, List<float> labels, int interation, float rate)
{
for (int i = 0; i < interation; i++)
{
one_iteration(Input_vecs, labels, rate);
}
}
private void one_iteration(List<List<float>> Input_vecs, List<float> labels, float rate)
{
for (int i = 0; i < labels.Count; i++)
{
var output = Predict(Input_vecs[i]);
update_weights(Input_vecs[i], output, labels[i], rate);
}
}
private void update_weights(List<float> input_vec, float output, float label, float rate)
{
var delta = label - output;
for (int i = 0; i < weights.Count; i++)
{
weights[i] += rate * delta * input_vec[i];
}
//更新bias
bias += rate * delta;
}
}
测试代码如下:
AndDemo是通过感知机模拟一个AND函数,LinearUnitDemo则是模拟一个线性单元函数。
using System;
using System.Collections.Generic;
namespace CSharp
{
class Program
{
static void Main(string[] args)
{
AndDemo();
LinearUnitDemo();
}
static void LinearUnitDemo()
{
Func<float, float> activator = (x) => { return x; };
Perceptron p = new Perceptron(1, activator);
List<List<float>> Input_vecs = new List<List<float>>();
Input_vecs.Add(new List<float>());
Input_vecs.Add(new List<float>());
Input_vecs.Add(new List<float>());
Input_vecs.Add(new List<float>());
Input_vecs.Add(new List<float>());
Input_vecs[0].Add(5);
Input_vecs[1].Add(3);
Input_vecs[2].Add(8);
Input_vecs[3].Add(1.4f);
Input_vecs[4].Add(10.1f);
List<float> labels = new List<float>();
labels.Add(5500);
labels.Add(2300);
labels.Add(7600);
labels.Add(1800);
labels.Add(11400);
p.train(Input_vecs, labels, 50, 0.01f);
System.Console.WriteLine(p.ToString());
System.Console.WriteLine(Input_vecs[0][0] + " years: " + p.Predict(Input_vecs[0]));
System.Console.WriteLine(Input_vecs[1][0] + " years: " + p.Predict(Input_vecs[1]));
System.Console.WriteLine(Input_vecs[2][0] + " years: " + p.Predict(Input_vecs[2]));
System.Console.WriteLine(Input_vecs[3][0] + " years: " + p.Predict(Input_vecs[3]));
System.Console.WriteLine(Input_vecs[4][0] + " years: " + p.Predict(Input_vecs[4]));
}
static void AndDemo()
{
Func<float, float> activator = (x) => { return x > 0 ? 1.0f : 0.0f; };
Perceptron p = new Perceptron(2, activator);
List<List<float>> Input_vecs = new List<List<float>>();
Input_vecs.Add(new List<float>());
Input_vecs.Add(new List<float>());
Input_vecs.Add(new List<float>());
Input_vecs.Add(new List<float>());
Input_vecs[0].Add(1);
Input_vecs[0].Add(1);
Input_vecs[1].Add(0);
Input_vecs[1].Add(0);
Input_vecs[2].Add(1);
Input_vecs[2].Add(0);
Input_vecs[3].Add(0);
Input_vecs[3].Add(1);
List<float> labels = new List<float>();
labels.Add(1);
labels.Add(0);
labels.Add(0);
labels.Add(0);
p.train(Input_vecs, labels, 10, 0.1f);
System.Console.WriteLine(p.ToString());
System.Console.WriteLine("1 and 1 =" + p.Predict(Input_vecs[0]));
System.Console.WriteLine("0 and 0 =" + p.Predict(Input_vecs[1]));
System.Console.WriteLine("1 and 0 =" + p.Predict(Input_vecs[2]));
System.Console.WriteLine("0 and 1 =" + p.Predict(Input_vecs[3]));
}
}
}
对于机器学习感兴趣的同学可以关注一下微信号 "TensorFlow教室" 一起学习机器学习,深度学习,自然语言处理。
感知机和线性单元的C#版本的更多相关文章
- 用线性单元(LinearUnit)实现工资预测的Python3代码
功能:通过样本进行训练,让线性单元自己找到(这就是所谓机器学习)工资计算的规律,然后用两组数据进行测试机器是否真的get到了其中的规律. 原文链接在文尾,文章中的代码为了演示起见,仅根据工作年限来预测 ...
- ReLu(修正线性单元)、sigmoid和tahh的比较
不多说,直接上干货! 最近,在看论文,提及到这个修正线性单元(Rectified linear unit,ReLU). Deep Sparse Rectifier Neural Networks Re ...
- (2)Deep Learning之线性单元和梯度下降
往期回顾 在上一篇文章中,我们已经学会了编写一个简单的感知器,并用它来实现一个线性分类器.你应该还记得用来训练感知器的『感知器规则』.然而,我们并没有关心这个规则是怎么得到的.本文通过介绍另外一种『感 ...
- 修正线性单元(Rectified linear unit,ReLU)
修正线性单元(Rectified linear unit,ReLU) Rectified linear unit 在神经网络中,常用到的激活函数有sigmoid函数f(x)=11+exp(−x).双曲 ...
- 单层感知机_线性神经网络_BP神经网络
单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as ...
- TensorFlow学习笔记7-深度前馈网络(多层感知机)
深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数 ...
- DeepLearning学习(1)--多层感知机
想直接学习卷积神经网络,结果发现因为神经网络的基础较弱,学习起来比较困难,所以准备一步步学.并记录下来,其中会有很多摘抄. (一)什么是多层感知器和反向传播 1,单个神经元 神经网络的基本单元就是神经 ...
- lecture2-NN结构的主要类型的概述和感知机
Hinton课程第二课 一.NN结构的主要类型的概述 这里的结构就是连接在一起的神经元.目前来说,在实际应用中最常见的NN就是前向NN,他是将数据传递给输入单元,通过隐藏层最后到输出层的单元:一个更有 ...
- 现代英特尔® 架构上的 TensorFlow* 优化——正如去年参加Intel AI会议一样,Intel自己提供了对接自己AI CPU优化版本的Tensorflow,下载链接见后,同时可以基于谷歌官方的tf版本直接编译生成安装包
现代英特尔® 架构上的 TensorFlow* 优化 转自:https://software.intel.com/zh-cn/articles/tensorflow-optimizations-on- ...
随机推荐
- HDU1556(树状数组)
Color the ball Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 从RPC开始(二)、序列化
在C++的世界里构建一个序列化框架:并非一件困难的事情,但也并非简单.因此,需要分成两部分来完成这项任务: 1.序列化容器. 2.序列化方式. 前者,很容易理解:但也决定着我们将要存储数据的方式:二进 ...
- hushset的实现原理
实现源码 public HashSet() { map = new HashMap<>(); } 这里可以看见当我们new一个hashset时,实际上hashset类又创建了一个hashm ...
- oracle数据库在mybatis中使用uuid
<insert id="insert" parameterType="com.xxx.SystemDepartment"> <sele ...
- 【Spring】使用Spring的AbstractRoutingDataSource实现多数据源切换
最近因为项目需要在做两个项目间数据同步的需求,具体是项目1的数据通过消息队列同步到项目2中,因为这个更新操作还涉及到更新多个库的数据,所以就需要多数据源切换的操作.下面就讲讲在Spring中如何进行数 ...
- Padding Borders Outlines Margins
简介: 在20世纪90年代,许多网页布局是使用table,使用table最主要的原因是因为可以放text到一个盒子里,但是这是一个比较复杂的过程,现在可以使用比较简单的方法,那就是css. 元素盒子: ...
- css3动画animate
CSS3 动画 通过 CSS3,我们能够创建动画,这可以在许多网页中取代动画图片.Flash 动画以及 JavaScript. @keyframes 定义动画关键帧: @keyframes anima ...
- 解决CSS中float:left后需要clear:both清空
现在,大部分的横排导航都是通过 ul -> li *n -> a 来实现的.具我所知,要达到这种效果,有几种方法可以实现. 1.传统处理方式: li {float:left;}/*这样,对 ...
- android学习3——长宽的单位问题dp,px,dpi
android设备的单位px,pt,dp,sp 分辨率 先通俗说下分辨率的概念.可以把屏幕想想成一个个正方形格子组成的.如果横向有1280个格子,竖向有720个格子.那么分辨率就是1280*720.这 ...
- WebApi实现通讯加密
一. 场景介绍: 如题如何有效的,最少量的现有代码侵入从而实现客户端与服务器之间的数据交换加密呢? 二. 探究: 1.需求分析 webapi服务端 有如下接口: public class ApiTes ...