bzoj4826 [Hnoi2017]影魔
Description
Input
Output
Sample Input
7 9 5 1 3 10 6 8 2 4
1 7
1 9
1 3
5 9
1 5
Sample Output
39
4
13
16
正解:主席树+单调栈。
考虑每个点为最大值时能产生的贡献。
设当前点为$p$,左边比$p$大的第一个点为$x$,右边比$p$大的第一个点为$y$,$x$和$y$可以用单调栈求出。
那么只有$(x,y)$能产生$p1$的贡献,$(x,[p+1,y-1])$和$(y,[x+1,p-1])$能产生$p2$的贡献,这可以看成很多点对。
为了方便,我们把$p1$产生贡献的点对分成$(x,y)$和$(y,x)$,$p2*2$。
于是我们找出所有这些点对,把这些点对按照横坐标排序。
然后从前往后建主席树,区间修改+标记永久化即可。
查询的时候直接查询对应区间,即$[a,b]$线段树中的$[a,b]$之和,直接除以$2$,然后再加上$(b-a)*p1$。
//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1<<30)
#define N (300010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct data{ ll c,p,l,r; }q[*N]; ll sum[*N],lazy[*N],ls[*N],rs[*N],rt[N],sz;
ll lst[N],nxt[N],st[N],k[N],n,m,p1,p2,x,cnt,top; il ll gi(){
RG ll x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il ll cmp(const data &a,const data &b){ return a.p<b.p; } il void update(RG ll x,RG ll &y,RG ll l,RG ll r,RG ll xl,RG ll xr,RG ll v){
lazy[y=++sz]=lazy[x],ls[y]=ls[x],rs[y]=rs[x];
if (xl<=l && r<=xr){ sum[y]=sum[x]+(r-l+)*v,lazy[y]+=v; return; }
RG ll mid=(l+r)>>;
if (xr<=mid) update(ls[x],ls[y],l,mid,xl,xr,v);
else if (xl>mid) update(rs[x],rs[y],mid+,r,xl,xr,v);
else update(ls[x],ls[y],l,mid,xl,mid,v),update(rs[x],rs[y],mid+,r,mid+,xr,v);
sum[y]=sum[ls[y]]+sum[rs[y]]+(r-l+)*lazy[y]; return;
} il ll query(RG ll x,RG ll y,RG ll l,RG ll r,RG ll xl,RG ll xr,RG ll la){
if (xl<=l && r<=xr) return sum[y]-sum[x]+(r-l+)*la;
RG ll mid=(l+r)>>; la+=lazy[y]-lazy[x];
if (xr<=mid) return query(ls[x],ls[y],l,mid,xl,xr,la);
else if (xl>mid) return query(rs[x],rs[y],mid+,r,xl,xr,la);
else return query(ls[x],ls[y],l,mid,xl,mid,la)+query(rs[x],rs[y],mid+,r,mid+,xr,la);
} il void work(){
n=gi(),m=gi(),p1=gi(),p2=gi();
for (RG ll i=;i<=n;++i){
k[i]=gi();
while (top && k[st[top]]<k[i]) nxt[st[top--]]=i;
lst[i]=st[top],st[++top]=i;
}
while (top) nxt[st[top--]]=n+;
for (RG ll i=;i<=n;++i){
if (lst[i] && nxt[i]<=n){
q[++cnt]=(data){,lst[i],nxt[i],nxt[i]};
q[++cnt]=(data){,nxt[i],lst[i],lst[i]};
}
if (lst[i] && nxt[i]-i>)
q[++cnt]=(data){,lst[i],i+,nxt[i]-};
if (nxt[i]<=n && i-lst[i]>)
q[++cnt]=(data){,nxt[i],lst[i]+,i-};
}
sort(q+,q+cnt+,cmp);
for (RG ll i=;i<=cnt;++i){
while (x<q[i].p) rt[x+]=rt[x],++x;
update(rt[x],rt[x],,n,q[i].l,q[i].r,(q[i].c== ? p1 : *p2));
}
while (x<n) rt[x+]=rt[x],++x;
for (RG ll i=;i<=m;++i){
RG ll a=gi(),b=gi();
printf("%lld\n",query(rt[a-],rt[b],,n,a,b,)/+(b-a)*p1);
}
return;
} int main(){
File("sf");
work();
return ;
}
bzoj4826 [Hnoi2017]影魔的更多相关文章
- [bzoj4826][Hnoi2017]影魔_单调栈_主席树
影魔 bzoj-4826 Hnoi-2017 题目大意:给定一个$n$个数的序列$a$,求满足一下情况的点对个数: 注释:$1\le n,m\le 2\cdot 10^5$,$1\le p1,p2\l ...
- [BZOJ4826][HNOI2017]影魔(主席树)
4826: [Hnoi2017]影魔 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 669 Solved: 384[Submit][Status][ ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- BZOJ4826 [Hnoi2017]影魔 【线段树 + 单调栈】
题目链接 BZOJ4826 题解 蒟蒻智力水平捉急orz 我们会发现相邻的\(i\)和\(j\)贡献一定是\(p1\),可以很快算出来[然而我一开始忘了考虑调了半天] 我们现在只考虑不相邻的 我们只需 ...
- [BZOJ4826][HNOI2017]影魔 可持久化线段树
链接 题意:给你 \(1\) 到 \(n\) 的排列 \(k_1,k_2,\dots,k_n\) ,对 \(i,j (i<j)\)来说,若不存在 \(k_s (i<s<j)\) 大于 ...
- [BZOJ4826] [HNOI2017] 影魔 单调栈 主席树
题面 因为是一个排列,所以不会有重复的.如果有重复就没法做了.一开始没有仔细看题目想了半天. 发现,如果是第一种情况,那么边界\(l\)和\(r\)就应该分别是整个区间的最大值和次大值. 然后,对于那 ...
- 【BZOJ4826】[Hnoi2017]影魔 单调栈+扫描线
[BZOJ4826][Hnoi2017]影魔 Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝 ...
- bzoj 4826: [Hnoi2017]影魔 [主席树 单调栈]
4826: [Hnoi2017]影魔 题意:一个排列,点对\((i,j)\),\(p=max(i+1,j-1)\),若\(p<a_i,a_j\)贡献p1,若\(p\)在\(a_1,a_2\)之间 ...
- 4826: [Hnoi2017]影魔
4826: [Hnoi2017]影魔 https://lydsy.com/JudgeOnline/problem.php?id=4826 分析: 莫队+单调栈+st表. 考虑如何O(1)加入一个点,删 ...
随机推荐
- React 入门之路(1)
React React简介 是由Facebook公司推广的一套框架,已经应用instagram等产品 React就是为了提供应用程序性能而设计的一套框架 在angular中,对dom提供了一些指令,让 ...
- Weexpack 使用教程
简介 weexpack 是 weex 新一代的工程开发套件,是基于weex快速搭建应用原型的利器.它能够帮助开发者通过命令行创建weex工程,添加相应平台的weex app模版,并基于模版从本地.Gi ...
- UWP--页面传值
//匿名对象 private void Button1_OnClick(object sender, RoutedEventArgs e) { , name = "LBI" }); ...
- java内部发送http请求并取得返回结果,修改response的cookie
public Object userLogin(HttpServletRequest request, HttpServletResponse response, String email, Stri ...
- Linux云自动化运维第二课
一.Linux系统结构 1.Linux是一个倒树结构.Linux中所有的东西都是文件.这些文件都在系统的顶级目录中"/","/"是根目录."/&quo ...
- ad_封装_ads828
module ad_ctrl( clk,rst_n,ad_clk, ad_data,value_x,value_y,q_sig,wren,r_addr,w_addr ); input clk; inp ...
- 《C++之那些年踩过的坑(三)》
C++之那些年踩过的坑(三) 作者:刘俊延(Alinshans) 本系列文章针对我在写C++代码的过程中,尤其是做自己的项目时,踩过的各种坑.以此作为给自己的警惕. [版权声明]转载请注明原文来自:h ...
- shell是什么,各种shell的初步认识,适用于初学者
shell是什么?有什么用处?怎么用?我相信,这是大部分人刚接触到shell都有过的疑问.下面小编为大家讲解一下自己的讲解,希望能对大家有所帮助. 什么是shell? shell就是系统内核的一层壳, ...
- 原创SQlServer数据库生成简单的说明文档小工具(附源码)
这是一款简单的数据库文档生成工具,主要实现了SQlServer生成说明文档的小工具,目前不够完善,主要可以把数据库的表以及表的详细字段信息,导出到 Word中,可以方便开发人员了解数据库的信息或写技术 ...
- Python之路-Linux命令基础(1)
开启Linux操作系统,要求以root用户登录GNOME图形界面,语言支持选择为汉语 使用快捷键切换到虚拟终端2,使用普通用户身份登录,查看系统提示符,使用命令退出虚拟终端 ...