Python3 决策树
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 29 10:18:04 2017
@author: markli
"""
from sklearn.feature_extraction import DictVectorizer;
from sklearn import preprocessing;
from sklearn import tree;
from sklearn.externals.six import StringIO;
from sklearn.externals import joblib;
import csv;
import sys;
sys.path.append('../');
filepath = 'decisiontree.csv';
f = open(filepath,'r');
reader = csv.reader(f);
header = next(reader); #读取表头
print("表头为 %s" % header);
feature_list = [];
label_list = [];
for row in reader:
label_list.append(row[len(row)-1]);
rowdic = {};
for i in range(1,len(row)-1):
rowdic[header[i]] = row[i];
feature_list.append(rowdic);
print("特征值为 %s" % feature_list);
dv = DictVectorizer();
dummX = dv.fit_transform(feature_list).toarray();
print("特征提取值矩阵为 %s" % str(dummX));
#目标值特征化
lb = preprocessing.LabelBinarizer();
dummY = lb.fit_transform(label_list);
print("目标特征化值为 %s" % str(dummY));
clf = tree.DecisionTreeClassifier(criterion='entropy');
clf = clf.fit(dummX,dummY);
print("树 %s" % str(clf));
#保存模型
with open('dicisiontreeModel.dot','w') as f:
f = tree.export_graphviz(clf,feature_names=dv.get_feature_names(),out_file=f);
joblib.dump(clf,'dicisionTree_entropyModel.dot');
#读取模型 预测
'''
x = np.array([0,1,0,0,0,1,0,1,1,0]); #测试值
print(x.reshape((1,10)));
#sys.path.append('F:\\Python\\ML');
#f = open('F:\\Python\\ML\\dicisionTree_entropyModel.dot');
decisiontree.csv 文件格式
clf = joblib.load('F:\\Python\\ML\\dicis
ionTree_entropyModel.dot');
y = clf.predict(x.reshape((1,10))); #预测结果
print(y);
'''
Python3 决策树的更多相关文章
- 机器学习实战python3 决策树ID3
代码及数据:https://github.com/zle1992/MachineLearningInAction 决策树 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特 ...
- Python3 决策树ID3算法实现
# -*- coding: utf-8 -*- """ Created on Wed Jan 24 19:01:40 2018 @author: markli 采用信息增 ...
- 科学经得起实践检验-python3.6通过决策树实战精准准确预测今日大盘走势(含代码)
科学经得起实践检验-python3.6通过决策树实战精准准确预测今日大盘走势(含代码) 春有百花秋有月,夏有凉风冬有雪: 若无闲事挂心头,便是人间好时节. --宋.无门慧开 不废话了,以下训练模型数据 ...
- Python3实现机器学习经典算法(三)ID3决策树
一.ID3决策树概述 ID3决策树是另一种非常重要的用来处理分类问题的结构,它形似一个嵌套N层的IF…ELSE结构,但是它的判断标准不再是一个关系表达式,而是对应的模块的信息增益.它通过信息增益的大小 ...
- Python3实现机器学习经典算法(四)C4.5决策树
一.C4.5决策树概述 C4.5决策树是ID3决策树的改进算法,它解决了ID3决策树无法处理连续型数据的问题以及ID3决策树在使用信息增益划分数据集的时候倾向于选择属性分支更多的属性的问题.它的大部分 ...
- 【机器学习实战学习笔记(2-2)】决策树python3.6实现及简单应用
文章目录 1.ID3及C4.5算法基础 1.1 计算香农熵 1.2 按照给定特征划分数据集 1.3 选择最优特征 1.4 多数表决实现 2.基于ID3.C4.5生成算法创建决策树 3.使用决策树进行分 ...
- 机器学习实战:决策树的存储读写文件报错(Python3)
错误原因:pickle模块存储的是二进制字节码,需要以二进制的方式进行读写 1. 报错一:TypeError: write() argument must be str, not bytes 将决策树 ...
- 【机器学习实战 第九章】树回归 CART算法的原理与实现 - python3
本文来自<机器学习实战>(Peter Harrington)第九章"树回归"部分,代码使用python3.5,并在jupyter notebook环境中测试通过,推荐c ...
- 机器学习之决策树三-CART原理与代码实现
决策树系列三—CART原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9482885.html ID ...
随机推荐
- vertical-align 和 img属性 和 鼠标样式
一.vertical-align 一)定义:定义行内元素的基线相对于该所在基线的垂直对齐.(只针对行类块inline/inline-block/<img>,块级不适用!) 二)语法: 三 ...
- 腾讯WeTest《2017中国移动游戏质量白皮书》开放预约,再为国内手游把把脉
产品为王,质量先行.如果说2016年是爆款手游相继崛起的一年,那么2017年则更像是打磨精品.建立生态的高手切磋之年.守住一个游戏的质量生命线,方能建立健康生态,方能在如火如荼的行业竞争中角逐到最后. ...
- (转)iOS-Runtime知识点整理
runtime简介 因为Objc是一门动态语言,所以它总是想办法把一些决定工作从编译连接推迟到运行时.也就是说只有编译器是不够的,还需要一个运行时系统 (runtime system) 来执行编译后的 ...
- 724. Find Pivot Index
Given an array of integers nums, write a method that returns the "pivot" index of this arr ...
- bzoj 2588 Count on a tree
Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...
- php date函数
PHP星期几获取代码: 1 date("l"); 2 //data就可以获取英文的星期比如Sunday 3 date("w"); 4 //这个可以获取数字星期比 ...
- Python学习(二):函数入门
1.函数代码格式: def 函数名(): 函数内容 执行函数:函数名() 2.代码举例: #!/usr/bin/env python #coding=utf-8 #定义函数 def Func1(): ...
- pwd 命令详解
pwd 作用: 以绝对路径的方式显示用户当前工作目录,命令将当前目录的全路径名称(从根目录)写入标准输出, 全部目录使用/分隔,第一个/表示根目录, 最后一个/ 表示当前目录. 执行pwd 命令可以立 ...
- java 学习(二)
public class Scoure { public static void main(String args[]) { int score=90; if (score>=85 && ...
- WPF下可编辑Header的Tab控件实现
介绍 有这样一个需求,当用户双击Tab控件Header区域时, 希望可以直接编辑.对于WPF控件,提供一个ControlTemplate在加上一些Trigger就可以实现.效果如下: 代码 首先,我们 ...