转载自:

http://blog.csdn.net/txwh0820/article/details/46392293

矩阵的迹求导法则 
 

1. 复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix 


2. x is a column vector, A is a matrix

d(A∗x)/dx=A 
d(xT∗A)/dxT=A 
d(xT∗A)/dx=AT 
d(xT∗A∗x)/dx=xT(AT+A)

3. Practice: 
 
4. 矩阵求导计算法 
求导公式(撇号为转置): 
Y = A * X –> DY/DX = A’ 
Y = X * A –> DY/DX = A 
Y = A’ * X * B –> DY/DX = A * B’ 
Y = A’ * X’ * B –> DY/DX = B * A’ 
乘积的导数: 
d(f*g)/dx=(df’/dx)g+(dg/dx)f’

一些结论

  1. 矩阵Y对标量x求导: 
    相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 
    Y = [y(ij)]–> dY/dx = [dy(ji)/dx]
  2. 标量y对列向量X求导: 
    注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量 
    y = f(x1,x2,..,xn) –> dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)’
  3. 行向量Y’对列向量X求导: 
    注意1×M向量对N×1向量求导后是N×M矩阵。 
    将Y的每一列对X求偏导,将各列构成一个矩阵。 
    重要结论: 
    dX’/dX =I 
    d(AX)’/dX =A’
  4. 列向量Y对行向量X’求导: 
    转化为行向量Y’对列向量X的导数,然后转置。 
    注意M×1向量对1×N向量求导结果为M×N矩阵。 
    dY/dX’ =(dY’/dX)’
  5. 向量积对列向量X求导运算法则: 
    注意与标量求导有点不同。 
    d(UV’)/dX =(dU/dX)V’ + U(dV’/dX) 
    d(U’V)/dX =(dU’/dX)V + (dV’/dX)U’ 
    重要结论: 
    d(X’A)/dX =(dX’/dX)A + (dA/dX)X’ = IA + 0X’ = A 
    d(AX)/dX’ =(d(X’A’)/dX)’ = (A’)’ = A 
    d(X’AX)/dX =(dX’/dX)AX + (d(AX)’/dX)X = AX + A’X
  6. 矩阵Y对列向量X求导: 
    将Y对X的每一个分量求偏导,构成一个超向量。 
    注意该向量的每一个元素都是一个矩阵。
  7. 矩阵积对列向量求导法则: 
    d(uV)/dX =(du/dX)V + u(dV/dX) 
    d(UV)/dX =(dU/dX)V + U(dV/dX) 
    重要结论: 
    d(X’A)/dX =(dX’/dX)A + X’(dA/dX) = IA + X’0 = A
  8. 标量y对矩阵X的导数: 
    类似标量y对列向量X的导数, 
    把y对每个X的元素求偏导,不用转置。 
    dy/dX = [Dy/Dx(ij) ] 
    重要结论: 
    y = U’XV= ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] =UV’ 
    y = U’X’XU 则dy/dX = 2XUU’ 
    y =(XU-V)’(XU-V) 则 dy/dX = d(U’X’XU - 2V’XU + V’V)/dX = 2XUU’ - 2VU’ +0 = 2(XU-V)U’
  9. 矩阵Y对矩阵X的导数: 
    将Y的每个元素对X求导,然后排在一起形成超级矩阵。 
    10.乘积的导数 
    d(f*g)/dx=(df’/dx)g+(dg/dx)f’ 
    结论 
    d(x’Ax)=(d(x”)/dx)Ax+(d(Ax)/dx)(x”)=Ax+A’x (注意:”是表示两次转置)

矩阵求导 属于 矩阵计算,应该查找 Matrix Calculus 的文献: 
http://www.psi.toronto.edu/matrix/intro.html#Intro 
http://www.psi.toronto.edu/matrix/calculus.html 
http://www.stanford.edu/~dattorro/matrixcalc.pdf 
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf 
http://www4.ncsu.edu/~pfackler/MatCalc.pdf 
http://center.uvt.nl/staff/magnus/wip12.pdf

矩阵的f范数及其求偏导法则的更多相关文章

  1. 矩阵的 Frobenius 范数及其求偏导法则

    cr:http://blog.csdn.net/txwh0820/article/details/46392293 一.矩阵的迹求导法则   1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...

  2. 矩阵的frobenius范数及其求偏导法则

    例子: http://www.mathchina.net/dvbbs/dispbbs.asp?boardid=4&Id=3673

  3. Maths | 二次型求偏导

  4. 用tensorflow求偏导

    # coding:utf-8 from __future__ import absolute_import from __future__ import unicode_literals from _ ...

  5. MathType二次偏导怎么表示

    求导以及求偏导运算在数学中是很重要的一个部分,尤其是在高等数学中,基本都由函数的导数与偏导组成,很多公式定理也是关于这方面的,如果少了这一部分,数学将会黯然失色.因此在文档中涉及到这些内容时,必然会少 ...

  6. 2范数和F范数的区别

    2范数和F范数是不同的. 2范数表示矩阵或向量的最大奇异值,max⁡(svd(X)) 而 F范数表示矩阵所有元素平方和的开方根 sqrt(∑_(x_(i,j∈X))▒x_(i,j)^2 )

  7. Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)

    F. Four Divisors 题目连接: http://www.codeforces.com/contest/665/problem/F Description If an integer a i ...

  8. C++实现矩阵的相加/相称/转置/求鞍点

    1.矩阵相加 两个同型矩阵做加法,就是对应的元素相加. #include<iostream> using namespace std; int main(){ int a[3][3]={{ ...

  9. 螺旋矩阵O(1)根据坐标求值

    传送门 洛谷2239 •题意 从矩阵的左上角(第11行第11列)出发,初始时向右移动: 如果前方是未曾经过的格子,则继续前进,否则右转: 重复上述操作直至经过矩阵中所有格子. 根据经过顺序,在格子中依 ...

随机推荐

  1. [linux 整理] linux启动过程3

    本文介绍linux启动过程的第三步 busybox--------------------> rc init busybox位置即内容 busybox/init/init.c 1.各种设置信号 ...

  2. 用Go造轮子-管理集群中的配置文件

    写在前面 最近一年来,我都在做公司的RTB广告系统,包括SSP曝光服务,ADX服务和DSP系统.因为是第一次在公司用Go语言实现这么一个大的系统,中间因为各种原因造了很多轮子.现在稍微有点时间,觉着有 ...

  3. Elasticsearch与Solr

    公司之前有个用Lucene实现的伪分布式项目,实时性很差,后期数据量逐渐增大的时候,数据同步一次需要十几小时.当时项目重构考虑到的是Solr和ES,我参与的是Solr技术的预研.因为项目实时性要求很高 ...

  4. Fitting Bayesian Linear Mixed Models for continuous and binary data using Stan: A quick tutorial

    I want to give a quick tutorial on fitting Linear Mixed Models (hierarchical models) with a full var ...

  5. R语言的高质量图形渲染库Cairo(转)

    前言 R语言不仅在统计分析,数据挖掘领域,计算能力强大.在数据可视化上,也不逊于昂贵的商业.当然,背后离不开各种开源软件包的支持,Cairo就是这样一个用于矢量图形处理的类库. Cairo可以创建高质 ...

  6. PHP基础入门(一)---世界上最好用的编程语言

    作为一名程序员,我们应该都听过这样一个梗:PHP编程语言,是世界上最好用的编程语言~~~下面来和大家看一下,什么是PHP↓↓↓ PHP PHP又名超文本预处理器,是一种通用开源脚本语言.PHP主要适用 ...

  7. 解决相关css基础问题

    //html代码 <div class="operateWays"> <label> <input type="radio" na ...

  8. Delphi使用Zint生成QR二维条码(zint.dll)

    Delphi使用Zint生成QRCODE 本文使用的Zint Barcode Library(zint.dll)版本为2.6.0,和之前使用的2.4.3版本在zint_symbol这个结构体上会有差异 ...

  9. c++ 库函数返回的字符串指针是否需要手动释放

    #include <stdio.h> char * tmpnam(char *s); tmpnam函数返回一个不与任何已存在文件同名的有效文件名,如果字符串s不为空,文件名也会写入它.对t ...

  10. python之numpy库[2]

    python-numpy csv文件的写入和存取 写入csv文件 CSV (Comma‐Separated Value, 逗号分隔值),是一种常见的文件格式,用来存储批量数据. 写入csv文件 np. ...