THE MATRIX PROBLEM

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 41 Accepted Submission(s): 14
 
Problem Description
You have been given a matrix CN*M, each element E of CN*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.
 
Input
There are several test cases. You should process to the end of file.
Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.

 
Output
If there is a solution print "YES", else print "NO".
 
Sample Input
3 3 1 6
2 3 4
8 2 6
5 2 9
 
Sample Output
YES
 
 
 
Source
2010 Asia Regional Harbin
 
Recommend
lcy
 
/*
题意:给你一个n*m的矩阵,现在问你,存不存在这样的两个序列,a1,a2...an, b1,b2....bm,使得矩阵每行的元素都乘a序列每
列的都除以b序列,这个操作之后,矩阵的每个元素都在[L,U]这个区间内。 初步思路:对每个元素与L,U联立不等式,然后按照不等式建边,再用spfa跑一下 #补充:虽然初步思路想的很好但是,还是想不出来怎么才能以i,j为参考进行建边,看了一下题解,L<=num[i][j]*a[i]/b[j]<=U
可以化简为,L/num[i]<=a[i]/b[i]<=U/num,但是现在中间的除法还是不好处理,经过log之后除法变成减法,就会处理了很多
log(L/num[i][j])<=log(a[i])-log(b[j])<=log(U/num[i][j]);
*/
#include<bits/stdc++.h>
using namespace std;
/*****************************************************spaf模板*****************************************************/
const int maxn = + ;
const int INF = 1e9 + ; typedef struct node{
int to;
int next;
double w;
node(int a = , int b = , double c = ){
to = a; next = b; w = c;
}
}Edge; int s[maxn * ];
double dis[maxn * ];
Edge edge[maxn * maxn * ];
int tot, head[maxn * maxn * ];
int vis[maxn * ], cnt[maxn * ]; void add(int u, int v, double w){
edge[tot] = node(v, head[u], w);
head[u] = tot++;
}
bool spfa(int e){
int u, v, top = ;
for(int i = ; i <= e; ++i){
dis[i] = INF;
vis[i] = ; cnt[i] = ;
}
s[top++] = ; vis[] = ; dis[] = ;
while(top){
u = s[--top]; vis[u] = ;
if((++cnt[u]) > e) return ;
for(int i = head[u]; ~i; i = edge[i].next){
v = edge[i].to;
if(dis[v] > dis[u] + edge[i].w){
dis[v] = dis[u] + edge[i].w;
if(!vis[v]){
s[top++] = v;
vis[v] = ;
}
}
}
}
return ;
}
/*****************************************************spaf模板*****************************************************/
void init(){
memset(head,-,sizeof head);
tot=;
}
int n,m,L,U;
int num;
int main(){
// freopen("in.txt","r",stdin);
while(~scanf("%d%d%d%d",&n,&m,&L,&U)){
init();
for(int i=;i<n;i++){
for(int j=;j<m;j++){
scanf("%d",&num);
//log(L/num[i][j])<=log(a[i])-log(b[j])
//i-j>=log(L/num[i][j])
add(i, j + n, log(1.0 * U / num));
//log(U/num[i][j])>=log(a[i])-log(b[j])
//i-j<=log(U/num[i][j]) add(j + n, i, -log(1.0 * L / num));
}
}
printf(spfa(n+m-)?"YES\n":"NO\n");
}
return ;
}

THE MATRIX PROBLEM的更多相关文章

  1. HDU 3666.THE MATRIX PROBLEM 差分约束系统

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. hdoj--3666--THE MATRIX PROBLEM(差分约束+SPFA深搜)

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  5. HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  6. 差分约束系统+(矩阵)思维(H - THE MATRIX PROBLEM HDU - 3666 )

    题目链接:https://cn.vjudge.net/contest/276233#problem/H 题目大意:对于给定的矩阵  每一行除以ai  每一列除以bi 之后 数组的所有元素都还在那个L- ...

  7. HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)

    题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...

  8. HDU 3666 THE MATRIX PROBLEM (差分约束)

    题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...

  9. hduTHE MATRIX PROBLEM(差分约束)

    题目请戳这里 题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2...an,b1,b2,...,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间. 题目分析 ...

随机推荐

  1. day14<常见对象+>

    常见对象(正则表达式的概述和简单使用) 常见对象(字符类演示) 常见对象(预定义字符类演示) 常见对象(数量词) 常见对象(正则表达式的分割功能) 常见对象(把给定字符串中的数字排序) 常见对象(正则 ...

  2. jdk版本切换

    安装1.6/1.7/1.8版本的jdk 保存jdk的安装目录下的文件 卸载所有jdk 将jdk各个版本拷贝到一个文件夹下 配置环境变量 因为安装之后系统会有注册表之类的文件,单纯的修改环境是不会修改成 ...

  3. 我的python学习笔记一

    我的python学习笔记,快速了解python,适合有C语言基础的. http://note.youdao.com/noteshare?id=93b9750a8950c6303467cf33cb1ba ...

  4. SpringAop详解

    近几天学习了一下SpringAop在网上找了一些资料,此链接为原文链接http://www.cnblogs.com/xrq730/p/4919025.html AOP AOP(Aspect Orien ...

  5. 通过express搭建自己的服务器

    前言 为了模拟项目上线,我们就需要一个服务器去提供API给我们调用数据.这次我采用express框架去写API接口.所有请求都是通过ajax请求去请求服务器来返回数据.第一次用node写后端,基本就是 ...

  6. 批处理之 for/f 详解

    含有/F的for格式:FOR /F ["options"] %%i IN (file) DO command FOR /F ["options"] %%i IN ...

  7. Football 概率DP poj3071

                                                                                                 Footbal ...

  8. uva11806

    [题意] n行m列网格放k个石子.有多少种方法?要求第一行,第一列,最后一行,最后一列必须有石子. [题解] 利用容斥原理.可以转到求"第一行.第一列.最后一行.最后一列没有石子" ...

  9. EnCase missed some usb activities in the evidence files

    My friend is a developer and her colleague May was suspected of stealing the source code of an impor ...

  10. 为什么ABAP开发者需要使用面向对象技术?

    ABAP对面向对象的支持已有十多年的历史,然而在生产实践中,我们对这门技术的应用十分有限. 一方面,面向过程的惯性长期存在着:另一方面,对于大部分二次开发工作而言,似乎并没有足够的理由促使开发者使用面 ...