Convex(扫描线降维)
Convex
Time Limit: 10000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1838 Accepted Submission(s): 552
For each test case, the first line contain an integer n (4 ≤ n ≤ 700), indicating the number of points. Each of the next n lines contains two integers x and y (-1000000 ≤ x, y ≤ 1000000), indicating the coordinate of corresponding point.
4
0 0
0 1
1 0
1 1
4
0 0
1 0
0 1
-1 -1
0
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; #define eps 1e-8
#define pi acos(-1.0)
#define N 750 int n; struct point
{
double x, y;
point(){}
point(double _x, double _y ):x(_x), y(_y){}
}; point P[N];
double ang[*N];
int main()
{
//printf("%d", 700*699*698/6);
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = ; i < n; i++)
scanf("%lf %lf", &P[i].x, &P[i].y); long long ans = (long long)n*(n-)*(n-)*(n-)/;//C(n,4)
for(int i = ; i < n; i++)
{
long long cnt = (long long)(n-)*(n-)*(n-)/;//cnt记录包含i的三角形个数 int c = ;
for(int j = ; j < n; j++)
{
if(i == j) continue;
ang[c++] = atan2(P[j].y-P[i].y, P[j].x - P[i].x);
} sort(ang, ang+c);
for(int j = c; j < *c; j++)
{
ang[j] = ang[j-c] + *pi;
// printf("a-- %lf\n", ang[j-c] * 180.0 /pi);
}
// puts(""); int k = ; //puts("haha");while(t < 1000000000) t++;
for(int j = ; j < c; j++)//不包含i的三角形
{
while(ang[k] - ang[j] < pi) k++;
int d = k-j-;
// printf("d = %d\n", d);
if(d > ) cnt -= d*(d-)/;
} ans -= cnt;
}
printf("%I64d\n",ans);
}
return ;
}
Convex(扫描线降维)的更多相关文章
- 【题解】Atcoder ARC#76 F-Exhausted?
第一次用霍尔定理做题..简单的来说,就是判断一张二分图上是否存在完美匹配,只需要证明对于 \(a\) 集合中的任意 \(k\) 个点来说,都与 \(b\) 集合中的 \(k\) 个点有边相连.如果不满 ...
- Luogu 3242 [HNOI2015]接水果
BZOJ4009 权限题 真的不想再写一遍了 大佬blog 假设有果实$(x, y)$,询问$(a, b)$,用$st_i$表示$i$的$dfs$序,用$ed_i$表示所有$i$的子树搜完的$dfs$ ...
- 压缩感知与稀疏模型——Convex Methods for Sparse Signal Recovery
第三节课的内容.这节课上课到半截困了睡着了,看着大家都很积极请教认真听讲,感觉很惭愧.周末不能熬太晚.这个博客就记录一下醒着时候听到的内容. Motivation 目前的时代需要处理的数据量维度可能很 ...
- 奇异值分解(SVD)原理与在降维中的应用
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...
- 用scikit-learn进行LDA降维
在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结. 1. 对scikit-learn中LDA类概述 在scikit-le ...
- scikit-learn一般实例之四:使用管道和GridSearchCV选择降维
本例构建一个管道来进行降维和预测的工作:先降维,接着通过支持向量分类器进行预测.本例将演示与在网格搜索过程进行单变量特征选择相比,怎样使用GrideSearchCV和管道来优化单一的CV跑无监督的PC ...
- [LeetCode] Convex Polygon 凸多边形
Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...
- 机器学习基础与实践(三)----数据降维之PCA
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...
- 数据降维技术(1)—PCA的数据原理
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...
随机推荐
- [数据结构]C语言链表实现
我学数据结构的时候也是感觉很困难,当我学完后我发现了之所以困难时因为我没有系统的进行学习,而且很多教授都只是注重数据结构思想,而忽略了代码方面,为此我写了这些博文给那些试图自学数据结构的朋友,希望你们 ...
- bzoj 3894: 文理分科
Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位. ...
- 【WebGL】《WebGL编程指南》读书笔记——第4章
一.前言 今天继续第四章的学习内容,开始学习复合变换的知识. 二.正文 Example1: 复合变换 在书中,作者为我们封装了一套用于变换的矩阵对象:Matrix4对象.它 ...
- 对于group by 和 order by 并用 的分析
今天朋友问我一个sql查询. 需求是 找到idapi最近那条数据,说明idapi 是重复的,于是就简单的写了 SELECT * FROM `ag_alarm_history` group by ` ...
- Linux下jira自启动设置
jira 的启动主要依靠的是bin目录下的catalina.sh脚本,提供了如init脚本的start,stop等参数----------------------------------------- ...
- (转载)Android出现“Read-only file system”解决办法
下面介绍一篇Android出现“Read-only file system”解决办法 有碰到这类问题的朋友可参考参考. Android-出现Read-only file system的解决方法 输 ...
- JQ 为未来元素添加事件处理器—事件委托
随着DOM结构的复杂化和Ajax等动态脚本技术的运用,有了较多的动态添加进来的元素,直接用JQ添加click事件会发现新添加进来的元素并不能直接选取到,在这里就需要用到事件委托方法,JQ为事件委托提供 ...
- Odwiedziny[POI 2015]
题目描述 给定一棵n个点的树,树上每条边的长度都为1,第i个点的权值为a[i]. Byteasar想要走遍这整棵树,他会按照某个1到n的全排列b走n-1次,第i次他会从b[i]点走到b[i+1]点,并 ...
- Python学习_13_继承和元类
继承 继承的含义就是子类继承父类的命名空间,子类中可以调用父类的属性和方法,由于命名空间的查找方式,当子类中定义和父类同名属性或者方法时,子类的实例调用的是子类中的属性,而不是父类,这就形成了pyth ...
- TurnipBit—MicroPython开发板:从积木式编程语言开始学做小小创客
编程.建模.制作动画和游戏--这些当初我们默认只有成年人玩得转的事情,现在早已经被无数小孩子给颠覆甚至玩出新境界了.热爱科技和动手的"创客"(Maker)现在在全世界都炙手可热.今 ...