druid查询
查询是发送HTTP请求到,Broker, Historical或者Realtime节点。查询的JSON表达和每种节点类型公开相同的查询接口。
Queries are made using an HTTP REST style request to a Broker, Historical, or Realtime node. The query is expressed in JSON and each of these node types expose the same REST query interface.
We start by describing an example query with additional comments that mention possible variations. Query operators are also summarized in a table below.
Example Query "rand"
Here is the query in the examples/rand subproject (file is query.body), followed by a commented version of the same.
{
"queryType":
"groupBy",
"dataSource":
"randSeq",
"granularity": "all",
"dimensions": [],
"aggregations": [
{ "type":
"count", "name": "rows" },
{ "type":
"doubleSum", "fieldName": "events",
"name": "e" },
{ "type":
"doubleSum", "fieldName": "outColumn",
"name": "randomNumberSum" }
],
"postAggregations":
[{
"type":
"arithmetic",
"name":
"avg_random",
"fn":
"/",
"fields": [
{ "type":
"fieldAccess", "fieldName": "randomNumberSum"
},
{ "type":
"fieldAccess", "fieldName": "rows" }
]
}],
"intervals":
["2012-10-01T00:00/2020-01-01T00"]
}
This query could be
submitted via curl like so (assuming the query object is in a file
"query.json").
curl -X POST "http://host:port/druid/v2/?pretty"
-H 'content-type: application/json' -d @query.json
The
"pretty" query parameter gets the results formatted a bit nicer.
Details of Example Query "rand"
The queryType JSON
field identifies which kind of query operator is to be used, in this case it is
groupBy, the most frequently used kind (which corresponds to an internal
implementation class GroupByQuery registered as "groupBy"), and it
has a set of required fields that are also part of this query. The queryType
can also be "search" or "timeBoundary" which have similar
or different required fields summarized below:
{
"queryType":
"groupBy",
The dataSource JSON
field shown next identifies where to apply the query. In this case, randSeq
corresponds to the examples/rand/rand_realtime.spec file schema:
"dataSource": "randSeq",
The granularity JSON
field specifies the bucket size for values. It could be a built-in time
interval like "second", "minute",
"fifteen_minute", "thirty_minute", "hour" or
"day". It can also be an expression like {"type":
"period", "period":"PT6m"} meaning "6 minute
buckets". See Granularities
for more information on the different options for this field. In this example,
it is set to the special value "all" which means bucket all data points
together into the same time bucket
"granularity": "all",
The dimensions JSON
field value is an array of zero or more fields as defined in the dataSource
spec file or defined in the input records and carried forward. These are used
to constrain the grouping. If empty, then one value per time granularity bucket
is requested in the groupBy:
"dimensions": [],
A groupBy also
requires the JSON field "aggregations" (See Aggregations), which
are applied to the column specified by fieldName and the output of the
aggregation will be named according to the value in the "name" field:
"aggregations": [
{ "type":
"count", "name": "rows" },
{ "type":
"doubleSum", "fieldName": "events",
"name": "e" },
{ "type":
"doubleSum", "fieldName": "outColumn", "name":
"randomNumberSum" }
],
You can also specify
postAggregations, which are applied after data has been aggregated for the
current granularity and dimensions bucket. See Post Aggregations
for a detailed description. In the rand example, an arithmetic type operation
(division, as specified by "fn") is performed with the result
"name" of "avg_random". The "fields" field
specifies the inputs from the aggregation stage to this expression. Note that
identifiers corresponding to "name" JSON field inside the type
"fieldAccess" are required but not used outside this expression, so
they are prefixed with "dummy" for clarity:
"postAggregations": [{
"type":
"arithmetic",
"name":
"avg_random",
"fn":
"/",
"fields": [
{ "type":
"fieldAccess", "fieldName": "randomNumberSum"
},
{ "type":
"fieldAccess", "fieldName": "rows" }
]
}],
The time range(s) of
the query; data outside the specified intervals will not be used; this example
specifies from October 1, 2012 until January 1, 2020:
"intervals":
["2012-10-01T00:00/2020-01-01T00"]
}
Query Operators
The following table
summarizes query properties.
Properties shared by
all query types
|
property |
description |
required? |
|
dataSource |
query is applied to |
yes |
|
intervals |
range of time |
yes |
|
context |
This is a key-value |
no |
|
query type |
property |
description |
required? |
|
timeseries, topN, |
filter |
Specifies the |
no |
|
timeseries, topN, |
granularity |
the timestamp |
no |
|
timeseries, topN, |
aggregations |
aggregations that |
yes |
|
timeseries, topN, |
postAggregations |
aggregations of |
yes |
|
groupBy |
dimensions |
constrains the |
yes |
|
search |
limit |
maximum number of |
no |
|
search |
searchDimensions |
Dimensions to apply |
no |
|
search |
query |
The query portion |
yes |
Query Context
|
property |
default |
description |
|
timeout |
0 (no timeout) |
Query timeout in |
|
priority |
0 |
Query Priority. |
|
queryId |
auto-generated |
Unique identifier |
|
useCache |
true |
Flag indicating |
|
populateCache |
true |
Flag indicating |
|
bySegment |
false |
Return "by |
|
finalize |
true |
Flag indicating |
Query Cancellation
Queries can be
cancelled explicitely using their unique identifier. If the query identifier is
set at the time of query, or is otherwise known, the following endpoint can be
used on the broker or router to cancel the query.
DELETE
/druid/v2/{queryId}
For example, if the
query ID is abc123, the query can be cancelled as follows:
curl -X DELETE "http://host:port/druid/v2/abc123"
druid查询的更多相关文章
- Druid 查询超时配置的探究 → DataSource 和 JdbcTemplate 的 queryTimeout 到底谁生效?
开心一刻 昨晚跟我妈语音 妈:我年纪有点大了,想抱孩子了 我:妈,我都多大了,你还想抱我? 妈:我想抱小孩,谁乐意抱你呀! 我:刚好小区有人想找月嫂,要不我帮你联系下? 妈:你给我滚 然后她直接把语音 ...
- 【转载】DRuid 大数据分析之查询
转载自http://yangyangmyself.iteye.com/blog/2321759 1.Druid 查询概述 上一节完成数据导入后,接下来讲讲Druid如何查询及统计分析导入的数据 ...
- Druid.io系列(五):查询过程
原文链接: https://blog.csdn.net/njpjsoftdev/article/details/52956194 Druid使用JSON over HTTP 作为底层的查询语言,不过强 ...
- Druid 0.17入门(4)—— 数据查询方式大全
本文介绍Druid查询数据的方式,首先我们保证数据已经成功载入. Druid查询基于HTTP,Druid提供了查询视图,并对结果进行了格式化. Druid提供了三种查询方式,SQL,原生JSON,CU ...
- Druid学习之查询语法
写在前面 最近一段时间都在做druid实时数据查询的工作,本文简单将官网上的英文文档加上自己的理解翻译成中文,同时将自己遇到的问题及解决方法list下,防止遗忘. 本文的demo示例均来源于官网. D ...
- 快速了解Druid——实时大数据分析软件
Druid 是什么 Druid 单词来源于西方古罗马的神话人物,中文常常翻译成德鲁伊. 本问介绍的Druid 是一个分布式的支持实时分析的数据存储系统(Data Store).美国广告技术公司Met ...
- druid.io 海量实时OLAP数据仓库 (翻译+总结) (1)
介绍 我是NDPmedia公司的大数据OLAP的资深高级工程师, 专注于OLAP领域, 现将一个成熟的可靠的高性能的海量实时OLAP数据仓库介绍给大家: druid.io NDPmedia在2014年 ...
- druid.io 海量实时OLAP数据仓库 (翻译+总结) (1)——分析框架如hive或者redshift(MPPDB)、ES等
介绍 我是NDPmedia公司的大数据OLAP的资深高级工程师, 专注于OLAP领域, 现将一个成熟的可靠的高性能的海量实时OLAP数据仓库介绍给大家: druid.io NDPmedia在2014年 ...
- [转帖]OLAP引擎这么多,为什么苏宁选择用Druid?
OLAP引擎这么多,为什么苏宁选择用Druid? 原创 51CTO 2018-12-21 11:24:12 [51CTO.com原创稿件]随着公司业务增长迅速,数据量越来越大,数据的种类也越来越丰富, ...
随机推荐
- javascript组成概述认识
这里的JavaScript组成概述是说的在浏览器端渲染的JavaScript而不是nodejs js组成概述 js的完整实现是由ECMAscript.DOM.BOM三个部分组成的: -ECMAscri ...
- KMP算法的优化与详解
文章开头,我首先抄录一些阮一峰先生关于KMP算法的一些讲解. 下面,我用自己的语言,试图写一篇比较好懂的 KMP 算法解释. 1. 首先,字符串"BBC ABCDAB ABCDABCDABD ...
- Java数据结构之Set学习总结
前言: 前面介绍了Java的数据结构List.Map,今天抽空学习总结一下另一种数据结构Set. Set介绍 Set相对于List.Map是最简单的一种集合.集合中的对象不按特定的方式排序,并且没有重 ...
- Postgresql 经纬度
增加一列: add column `location` geometry default p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px &q ...
- python安装插件包注意事项
注意!注意!注意!安装以来lib库时强烈建议使用pip安装:原因:nu1:用exe安装会出现各种意想不到让您惊讶的错误!!!nu2:这种错误很难解决且花费无用功!!! 使用pip安装: nu1:使用. ...
- 机器学习基石 1 The Learning Problem
机器学习基石 1 The Learning Problem Introduction 什么是机器学习 机器学习是计算机通过数据和计算获得一定技巧的过程. 为什么需要机器学习 1 人无法获取数据或者数据 ...
- RobotFramework中解析中文报错UnicodeDecodeError
在RobotFramework中解析一段包含中文的字符串时遇到下面的报错: FAIL : UnicodeDecodeError: 'ascii' codec can't decode byte 0xe ...
- Map集合概述和特点
A:Map集合概述和特点(Set底层依赖的是Map) 将键映射到值的对象 一个映射不能包含重复的键 每个键最多只能映射到一个值 B:Map接口和Collection接口的不同 Map是双列的(是双列集 ...
- Linux块设备IO子系统(二) _页高速缓存
磁盘驱动就是实现磁盘空间和内存空间数据上的交互,在上一篇中我们讨论了内存端的Page Segment Block Sector相关的概念,本文以3.14内核为例,讨论这部分内存是如何被组织管理的.我们 ...
- ThreadLocal本地线程变量的理解
一般的Web应用划分为展现层.服务层和持久层三个层次,在不同的层中编写对应的逻辑,下层通过接口向上层开放功能调用.在一般情况下,从接收请求到返回响应所经过的所有程序调用都同属于一个线程. ...