亚瑟王的宫殿:比较 tricky 的图论。

图论做法

思路

因为是无向图,所以考虑一个经典 trick,把所有点到集合点的距离之和化为集合点到其他所有点的位置之和,就可以从集合点做单源最短路了。

于是我们枚举集合点,从集合点 BFS 一遍,然后算出答案。

但是这题还有国王,有一个骑士要去接国王去集合点,于是考虑在枚举集合点后,继续枚举是哪个骑士去接国王。

那么某个骑士去接国王的代价如何计算呢?显然,骑士和国王必将在某一个点处会合,并且对于每一个会合位置,国王走的步数是确定的。因此我们可以把接国王的代价看作骑士移动的代价,也就是建立分层图,一层代表还没接到国王,一层代表接到了国王。每一层内部的边权都是 \(1\),只有两层之间的边权为国王到某个点的代价。于是我们就可以用 dijkstra 快速计算骑士接到国王再到集合点的代价了。注意这一部分也要从集合点开始跑单源最短路。

时间复杂度 \(O(n^2m^2\log nm)\)。

注意特判只有一个国王以及集合点无法到达的情况。

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define lc (p<<1)
#define rc ((p<<1)|1)
#define eb(x) emplace_back(x)
#define pb(x) push_back(x)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
using pi=pair<int,int>;
using piii=pair<int,pair<int,pi> >;
int n,m,kx,ky,ax[2005],ay[2005],s;
int d[50][50],dk[50][50],dis[2][50][50],ans=0x3f3f3f3f;
int gox[]={1,1,2,2,-1,-1,-2,-2};
int goy[]={2,-2,1,-1,2,-2,1,-1};
int gokx[]={0,0,1,1,1,-1,-1,-1};
int goky[]={1,-1,0,1,-1,0,1,-1};
bool legal(int x,int y){return (1<=x&&x<=n&&1<=y&&y<=m);}
void bfs_knight(int x,int y)
{
memset(d,0x3f,sizeof(d));
d[x][y]=0;
queue<pi>q;
q.push({x,y});
while(!q.empty())
{
pi now=q.front();
q.pop();
int nx=now.fi,ny=now.se;
for(int i=0;i<8;i++)
{
int tx=nx+gox[i],ty=ny+goy[i];
if(legal(tx,ty)&&d[tx][ty]>=0x3f3f3f3f)
{
d[tx][ty]=d[nx][ny]+1;
q.push({tx,ty});
}
}
}
}
void bfs_king(int x,int y)
{
memset(dk,0x3f,sizeof(dk));
dk[x][y]=0;
queue<pi>q;
q.push({x,y});
while(!q.empty())
{
pi now=q.front();
q.pop();
int nx=now.fi,ny=now.se;
for(int i=0;i<8;i++)
{
int tx=nx+gokx[i],ty=ny+goky[i];
if(legal(tx,ty)&&dk[tx][ty]>=0x3f3f3f3f)
{
dk[tx][ty]=dk[nx][ny]+1;
q.push({tx,ty});
}
}
}
}
void dijkstra(int x,int y)
{
priority_queue<piii,vector<piii>,greater<piii> >q;
memset(dis,0x3f,sizeof(dis));
dis[0][x][y]=0;
q.push({0,{0,{x,y}}});
while(!q.empty())
{
piii now=q.top();
q.pop();
int lv=now.se.fi,nx=now.se.se.fi,ny=now.se.se.se;
for(int i=0;i<8;i++)
{
int tx=nx+gox[i],ty=ny+goy[i];
if(legal(tx,ty)&&dis[lv][tx][ty]>dis[lv][nx][ny]+1)
{
dis[lv][tx][ty]=dis[lv][nx][ny]+1;
q.push({dis[lv][tx][ty],{lv,{tx,ty}}});
}
}
if(lv==0)
{
if(dis[1][nx][ny]>dis[0][nx][ny]+dk[nx][ny])
{
dis[1][nx][ny]=dis[0][nx][ny]+dk[nx][ny];
q.push({dis[1][nx][ny],{1,{nx,ny}}});
}
}
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n>>m;
char c;
int x,y;
cin>>c>>x;
y=c-'A'+1;
kx=x,ky=y;
while(cin>>c>>x){ax[s+1]=x,ay[s+1]=c-'A'+1;s++;}
if(s==0)
{
cout<<0;
return 0;
}
bfs_king(kx,ky);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
bool ilg=0;
int res=0x3f3f3f3f,tot=0;
bfs_knight(i,j);
dijkstra(i,j);
for(int k=1;k<=s;k++)
{
tot+=d[ax[k]][ay[k]];
if(d[ax[k]][ay[k]]>=0x3f3f3f3f/2){ilg=1;break;}
}
if(ilg)continue;
for(int k=1;k<=s;k++)res=min(res,tot-d[ax[k]][ay[k]]+dis[1][ax[k]][ay[k]]);
ans=min(ans,res);
}
}
cout<<ans;
return 0;
}

搜索做法

比较没道理,但凡这题不限制行列的个数,把 \(nm\) 再加大点,都不至于让这种做法过去。但是这种做法还是有点意义的。

同样是枚举集合点。这次我们考虑骑士接国王最多要花费多少步。显然,因为棋盘很小,所以最多不会超过 \(10\) 步就能接到国王。这当然不是一个准确的下界,只是这样取比较保险,洛谷上的题解大多都取少了,可以被 hack 掉。

于是我们枚举国王走 \(10\) 步以内到的点,然后像上面一样暴力做就好了。

时间复杂度 \(O(n^2m^2\times 100)\)。

代码没写。

Luogu P1930 亚瑟王的宫殿 题解 [ 蓝 ] [ 分层图最短路 ] [ 枚举 ]的更多相关文章

  1. 洛谷P1930 亚瑟王的宫殿 Camelot

    P1930 亚瑟王的宫殿 Camelot 19通过 53提交 题目提供者JOHNKRAM 标签USACO 难度提高+/省选- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 很久以前,亚瑟王和 ...

  2. 洛谷 P1930 亚瑟王的宫殿 Camelot

    传送门 题目大意:棋盘有骑士有王,让所有点跳到一个点,求所有棋子跳的步数和,和最小. 题解:bfs+枚举 王的人生: 1):自己走到聚集点 2):某个骑士来到王这里,两个棋子一起到聚集点 3):王走几 ...

  3. 【题解】P3645 [APIO2015]雅加达的摩天楼(分层图最短路)

    [题解]P3645 [APIO2015]雅加达的摩天楼(分层图最短路) 感觉分层图是个很灵活的东西 直接连边的话,边数是\(O(n^2)\)的过不去 然而我们有一个优化的办法,可以建一个新图\(G=( ...

  4. USACO Training3.3亚瑟王的宫殿【搜索】By cellur925

    题目传送门 因为太蒟了,所以参考了dalao@zbtrs ==    对此表示感谢并侵删. 看起来我们就知道这是搜索题. 最后的情况分两种:有骑士背国王/国王自食其力走到集合点. 首先,我们不知道大家 ...

  5. BZOJ 2763 飞行路线(分层图最短路)题解

    题意:中文题意不解释... 思路:分层图最短路,我们再开一维用来表示当前用了多少次免费次数,dis[i][j]就表示到达i点用了j次免费的最短路,有点DP的感觉. 当个模板用 参考:分层图最短路 代码 ...

  6. 【学习笔记/题解】分层图/[JLOI2011]飞行路线

    题目戳我 \(\text{Solution:}\) 关于分层图: 一般用于处理:给你\(k\)次机会对边权进行修改的最短路问题. 算法流程: 建立出\(k\)层图,对应进行\(k\)次操作后的局面. ...

  7. 洛谷 P3239 / loj 2112 [HNOI2015] 亚瑟王 题解【期望】【DP】

    ???看不懂的期望DP 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚 ...

  8. P3239 [HNOI2015]亚瑟王——概率DP

    题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...

  9. 洛谷P3239 [HNOI2015]亚瑟王

    题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能 ...

  10. BZOJ 4008 【HNOI2015】 亚瑟王

    题目链接:亚瑟王 这道题好神啊TAT--果然我的dp还是太弱了-- 一开始想了半天的直接dp求期望,结果最后WA的不知所云-- 最后去翻了题解,然后发现先算概率,再求期望--新姿势\(get\). 我 ...

随机推荐

  1. golang之sync包

    介绍sync包中常用的方法, - sync:提供基本的同步原语(比如Mutex.RWMutex.Locker)和 工具类(Once.WaitGroup.Cond.Pool.Map) - sync/at ...

  2. Python 学习记录(2)

    NumPy数组规整 对数组进行各种变化 转换数组形状 import numpy as np a=np.arange(1,6+1) b=np.reshape(a,(2,3)) print(a) prin ...

  3. Echarts 颜色管理

    1.Echarts的颜色设计 Echarts的颜色的设置分为两种:色盘和具体颜色 色盘适合做全局设置,因为他里面有多个颜色,通俗的说色盘就是颜色预设值列表,色盘统一使用color属性进行配置. 而具体 ...

  4. 安卓导出已安装app的apk

    安卓导出已安装应用APK 有时候想看看别人的APK里面的资源文件或者是逆向,首先就得先搞到APK文件 两种方法获取手机上已安装应用的APK文件 通过adb命令 首先把目标手机连接上电脑 在终端输入 a ...

  5. 【Spring】作业记录:spring项目从创建、配置到功能实现、测试

    提前声明: 1.这只是文档一次作业记录,也许会有不太恰当的地方,所以仅供参考. 2.适合不知道怎么创建配置的参考.仅仅是参考,而不是抄代码. 目录 项目创建 配置pom.xml 连接数据库 快速创建实 ...

  6. Spring Boot轻松理解动态注入,删除bean

    原文地址:http://412887952-qq-com.iteye.com/blog/2348445 ​ 我们通过getBean来获得对象,但这些对象都是事先定义好的,我们有时候要在程序中动态的加入 ...

  7. rysnc使用手册

    rsync 是一个用于在本地和远程计算机之间同步文件和目录的命令行工具.它具有许多强大的功能,包括增量传输.压缩和保留权限等.以下是一些 rsync 的常用选项和用法示例: 基本用法 rsync [O ...

  8. 基于斜率-截距式参数方程的直线Hough变换

  9. 今天记录一下小程序使用微信客服api,而不是小程序客服

    小程序客服缺少很多东西,并且只能使用button的开放能力,所以尝试使用一下微信客服,自己开发客服又比较麻烦,秉着能免费绝不花钱的想法,接下来就直接写代码,也就是api,记录下来方便使用 wx.ope ...

  10. 国家和地区代码列表,ISO 3166-1:2006

    本文根据ISO 3166-1:2006(International Standard Norme Internationale) 英文版(含2007年补充说明)整理.与ISO 3166-1:1997相 ...