hdu 4424 & zoj 3659 Conquer a New Region (并查集 + 贪心)
Conquer a New Region
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 657 Accepted Submission(s): 179
There are N towns (numbered from 1 to N) in this region connected by several roads. It's confirmed that there is exact one route between any two towns. Traffic is important while controlled colonies are far away from the local country. We define the capacity C(i, j) of a road indicating it is allowed to transport at most C(i, j) goods between town i and town j if there is a road between them. And for a route between i and j, we define a value S(i, j) indicating the maximum traffic capacity between i and j which is equal to the minimum capacity of the roads on the route.
Our king wants to select a center town to restore his war-resources in which the total traffic capacities from the center to the other N - 1 towns is maximized. Now, you, the best programmer in the kingdom, should help our king to select this center.
The first line of each case contains an integer N. (1 <= N <= 200,000)
The next N - 1 lines each contains three integers a, b, c indicating there is a road between town a and town b whose capacity is c. (1 <= a, b <= N, 1 <= c <= 100,000)
1 2 2
2 4 1
2 3 1
4
1 2 1
2 4 1
2 3 1
3
#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 200010
typedef long long ll;
using namespace std; struct node
{
int u,v,w;
bool operator <(const node a)const
{
return w>a.w;
}
}edge[N];
int cnt[N],pre[N]; //pre[]记录前一个节点编号
ll sum[N]; //sum[i]表示i为根的边权和,cnt[i]记录i为根的树中元素个数 int find(int a) //找根节点
{
return pre[a]=(pre[a]==a?a:find(pre[a]));
}
int main()
{
int n,i;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n-1;i++)
{
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
}
sort(edge+1,edge+n); //从大到小排序
for(i=1;i<=n;i++)
{
cnt[i]=1;
sum[i]=0;
pre[i]=i;
}
ll ans=0;
for(i=1;i<=n-1;i++)
{
int ra=find(edge[i].u);
int rb=find(edge[i].v);
ll bisr=sum[rb]+(ll)edge[i].w*cnt[ra];
ll aisr=sum[ra]+(ll)edge[i].w*cnt[rb];
if(bisr>aisr)
{
pre[ra]=rb;
sum[rb]=bisr;
cnt[rb]+=cnt[ra];
}
else
{
pre[rb]=ra;
sum[ra]=aisr;
cnt[ra]+=cnt[rb];
}
ans=max(ans,max(aisr,bisr));
}
//printf("%I64d\n",ans);
printf("%lld\n",ans); //zoj上需要这么写才能AC
}
return 0;
} //bisr=把a并入b,aisr=把b并入a
//注意要用long long
hdu 4424 & zoj 3659 Conquer a New Region (并查集 + 贪心)的更多相关文章
- zoj 3659 Conquer a New Region(并查集)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4882 代码: #include<cstdio> #inc ...
- zoj 3659 Conquer a New Region The 2012 ACM-ICPC Asia Changchun Regional Contest
Conquer a New Region Time Limit: 5 Seconds Memory Limit: 32768 KB The wheel of the history roll ...
- ZOJ3659 Conquer a New Region 并查集
Conquer a New Region Time Limit: 5 Seconds Memory Limit: 32768 KB The wheel of the history roll ...
- ZOJ 3659 & HDU 4424 Conquer a New Region (并查集)
这题要用到一点贪心的思想,因为一个点到另一个点的运载能力决定于其间的边的最小权值,所以先把线段按权值从大到小排个序,每次加的边都比以前小,然后合并集合时,比较 x = findset(a) 做根或 y ...
- zoj 3659 Conquer a New Region
// 给你一颗树 选一个点,从这个点出发到其它所有点的权值和最大// i 到 j的最大权值为 i到j所经历的树边容量的最小值// 第一感觉是树上的dp// 后面发现不可以// 看了题解说是并查集// ...
- hdu 4424 Conquer a New Region (并查集)
///题意:给出一棵树.树的边上都有边权值,求从一点出发的权值和最大,权值为从一点出去路径上边权的最小值 # include <stdio.h> # include <algorit ...
- hdu4424 Conquer a New Region 并查集/类似最小生成树
The wheel of the history rolling forward, our king conquered a new region in a distant continent.The ...
- HDU 1598 find the most comfortable road 并查集+贪心
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1598 find the most comfortable road Time Limit: 1000 ...
- HDU 3081 Marriage Match II (二分图,并查集)
HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...
随机推荐
- ado.net与各种orm操作数据方式的比较
ADO.NET与ORM的比较(1):ADO.NET实现CRUD http://zhoufoxcn.blog.51cto.com/792419/283952 ADO.NET与ORM的比较(2):NHib ...
- Swift中共有74个内建函数
Swift中共有74个内建函数,但是在Swift官方文档(“The Swift Programming Language”)中只记录了7中.剩下的67个都没有记录. 本文将列举Swift所有的内建 ...
- OC - 27.CATransition
概述 简介 CATransition又称转场动画,是CAAnimation的子类,可以直接使用 转场动画主要用于为图层提供移入/移出屏幕的动画效果 转场动画常见的应用是UINavigationCont ...
- async await的前世今生
async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...
- ROW_NUMBER分页的注意事项
之前在使用ROW_NUMBER分页获取数据的时候,直接用ROW_NUMBER里的SELECT语句查出了所有的数据. like this: select * from ( select row_numb ...
- Getopt::Long 模块的简单使用
用法简介 1.带值参数传入程序内部 ※参数类型:整数, 浮点数, 字串 GetOptions( 'tag=s' => \$tag ); ‘=’表示此参数一定要有参数值, 若改用’:'代替表示参数 ...
- javascript常用内置对象总结(重要)
Javascript对象总结 JS中内置了17个对象,常用的是Array对象.Date对象.正则表达式对象.string对象.Global对象 Array对象中常用方法: Concat():表示把几个 ...
- C++ 类的前向声明
前向声明 在计算机程序设计中, 前向声明是指声明标识符(表示编程的实体,如数据类型.变量.函数)时还没有给出完整的定义.即可以声明一个类而不定义它,只声明类但不知道类的成员变量.函数等具体细节. 如: ...
- php基础知识【oop/mvc/orm/aop】
OOP 面向对象编程是一种计算机编程架构.OOP 的一条基本原则是计算机程序是由单个能够起到子程序作用的单元或对象组合而成.OOP 达到了软件工程的三个主要目标:重用性.灵活性和扩展性.为了实现整体运 ...
- Android 内核基本知识
Android基本知识 Android基本知识.... 1 1. 各版本系统特性.... 1 2. View绘制流程.... 2 3. 动画体系.... 2 4. 事件分发机制.... 3 输入消息获 ...