1. (a) 证明 (6) 定义了范数.

(b) 证明它们在 (5) 式意义下是等价的.

证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z,u)|''\leq |(z,u)|\leq \sqrt{2}|(z,u)|''. \eex$$

2. 证明定理 2.

证明: 对 $y_1,y_2\in \bar Y$, $$\bex \exists\ Y\ni y_{1n}\to y_1,\quad Y\ni y_{2n}\to y_2, \eex$$ 而 $$\bex Y\ni ky_{1n}+y_{2n}\to ky_1+y_2. \eex$$ 于是 $ky_1+y_2\in \bar Y$.

3. 证明: 若 $X$ 是一个 Banach 空间, $Y$ 是 $X$ 的闭子空间, 则商空间 $X/Y$ 是完备的.

证明: 设 $[x_n]$ 是 $X/Y$ 中的 Cauchy 列, 则 $$\bex \forall\ \ve>0,\ \exists\ N,\ m>n\geq N\ra |[x_m-x_n]| =|[x_m-x_n]|<\ve. \eex$$ 按照 $[x]$ 的范数定义, $$\bex \exists\ q_m,q_n,\st q_m-x_m\in Y,\ q_n-x_n\in Y,\st |q_m-q_n|<2\ve. \eex$$ 由 $X$ 完备, $$\bex \exists\ q,\st q_n\to q\quad\sex{n\to\infty}. \eex$$ 而 $$\beex \bea |[x_n]-[q]|&=|[q_n]-[q]|\\ &=|[q_n-q]|\\ &\leq |q_n-q|\\ &\to 0\quad\sex{n\to\infty}. \eea \eeex$$

4. 证明赋范线性空间的每个有限维子空间都是闭的.

证明: 设 $X$ 是赋范线性空间, $Y=\span\sed{e_1,\cdots,e_n}$ 为其 $n$ 维线性子空间. 往证 $$\bee\label{5_4_equiv} c_1\sex{\sum_{k=1}^n y_k^2}^\frac{1}{2} \leq \sen{y}\leq c_2\sex{\sum_{k=1}^n y_k^2}^\frac{1}{2}. \eee$$事实上, $$\bee\label{5_4_continu} \bea \sen{y} &=\sen{\sum_{k=1}^n y_ke_k}\\ &\leq \sum_{k=1}^n |y_k|\cdot \sen{e_k}\\\ &\leq \sex{\sum_{k=1}^n y_k^2}^\frac{1}{2} \cdot \sex{\sum_{k=1}^n \sen{e_k}^2}^\frac{1}{2}. \eea \eee$$反过来, 考虑 $$\bex f(y)=\sen{y},\quad y\in S=\sed{y\in Y;\ \sum_{k=1}^n y_k^2=1}. \eex$$ 则由 \eqref{5_4_continu} 知 $f$ 在紧集 $S$ 上连续, 是能取到下确界 $m$ 的. 该 $m>0$ (否则 $\exists\ y\in S,\st \sen{y}=0$). 故 $$\bex f(y)\geq m,\quad \sum_{k=1}^ny_k^2=1, \eex$$ $$\bex f(y)\geq m\sex{\sum_{k=1}^n y_k^2}^\frac{1}{2},\quad \forall\ y\in Y. \eex$$ 既然有了 \eqref{5_4_equiv}, $\sex{Y,\sen{\cdot}}$ 与 $\bbR^n$ 拓扑同构, 也是完备的, 而为 $X$ 的闭子空间.

5. 证明例 (a)、例 (c)、例 (d) 和例 (e) 中的上确界范数不是严格次可加的.

证明: 以 (a) 为例, 取 $$\bex x=(1,0,\cdots),\quad y=(1,1,\cdots), \eex$$ 则 $$\bex \sen{x+y}=2=\sen{x}+\sen{y}, \eex$$ 但 $x,y$ 线性无关.

6. 证明例 (b) 和 例 (f) 中的范数当 $p=1$ 时不是严格次可加的.

证明: 以 (b) 为例, 取 $$\bex x=(1,0,\cdots),\quad y=(0,1,\cdots), \eex$$ $$\bex \sen{x+y}=2=\sen{x}+\sen{y}, \eex$$ 但 $x,y$ 线性无关.

7. 由 (41) 推出 ${\bf M}$ 是线性的.

证明: $$\bee\label{5_7_linear} \bea 2z'=x'+y'\ra 2{\bf M}\cfrac{x+y}{2}={\bf M} x+{\bf M} y. \eea \eee$$取 $y=0$ 有 $$\bee\label{5_7_two} 2{\bf M} \cfrac{x}{2}={\bf M} x. \eee$$往用数学归纳法证明 $$\bex {\bf M} (kx)=k{\bf M} x,\quad (k=1,2,\cdots). \eex$$ 事实上, $$\beex \bea {\bf M} (kx)&={\bf M} (x+(k-1)x)\\ &=\cfrac{1}{2}{\bf M} (2x)+\cfrac{1}{2}{\bf M} (2(k-1)x)\quad\sex{\eqref{5_7_linear}}\\ &={\bf M} x+{\bf M}((k-1)x)\quad\sex{\eqref{5_7_two}}\\ &={\bf M} x+(k-1){\bf M} x\quad\sex{\mbox{归纳假设}}\\ &=k{\bf M} x. \eea \eeex$$ 在 \eqref{5_7_linear} 中取 $y=-x$, 则 $$\bex {\bf M}(-x)=-{\bf M} x, \eex$$ 而有 $$\beex \bea {\bf M}(kx)&={\bf M}((-k)(-x))\\ &=(-k){\bf M}(-x)\\ &=(-k)(-{\bf M} x)\\ &=k{\bf M} x\quad\sex{k=-1,-2,\cdots}. \eea \eeex$$ 再由 $$\bex {\bf M} x={\bf M} \sex{m\cdot \cfrac{1}{m}x} =m\cdot {\bf M} \sex{\cfrac{1}{m}x} \eex$$ 知 $$\bex {\bf M} \sex{\cfrac{1}{m}x}=\cfrac{1}{m}{\bf M} x,\quad m\in \bbZ\bs \sed{0}; \eex$$ $$\bex {\bf M} \sex{\cfrac{k}{m}x} =k{\bf M} \sex{\cfrac{1}{m}x} =\cfrac{k}{m}{\bf M} x,\quad k\in\bbZ,\ m\in\bbZ\bs \sed{0}. \eex$$ 由 ${\bf M}$ 是等距知 ${\bf M}$ 连续, 而有 $$\bex {\bf M} (\al x)=\al \cdot {\bf M} x,\quad \forall\ \al. \eex$$ 最后, 由 \eqref{5_7_linear} 及 \eqref{5_7_two}, $$\bex {\bf M}(x+y)=\cfrac{1}{2}{\bf M}(2x)+\cfrac{1}{2}{\bf M}(2y)={\bf M} x+{\bf M} y. \eex$$

8. 证明 $X$ 是完备的.

证明: 仅须证明 $X$ 是闭的. 设 $$\bex X\ni x^k\to x, \eex$$ 则 $$\bex \max_n |a^k_n-a_n|\to 0\quad\sex{k\to\infty}. \eex$$ 而 $$\bex \forall\ \ve>0,\ \exists\ k,\st \sup_n |a^k_n-a_n|<\cfrac{\ve}{2}. \eex$$ 对该 $k$, 由 $\dps{\vlm{n}a^k_n=0}$ 知 $$\bex \exists\ N,\ n\geq N\ra |a_n^k|<\cfrac{\ve}{2}. \eex$$ 故 $$\bex n\geq N\ra |a_n|\leq |a_n-a^k_n|+|a^k_n|<\ve. \eex$$ 这说明 $\dps{\vlm{n}a_n=0}$, 而 $x\in X$.

错误指出:

Page 33, (23) 应为 $mp<n$. Page 34-35, 所有黑体字母应改为其相应的普通字母 (该书以后碰到均使适用此条例).

Page 35, 习题 6, 上确界三字应去掉.

[PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间的更多相关文章

  1. [PeterDLax著泛函分析习题参考解答]第2章 线性映射

    1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...

  2. [PeterDLax著泛函分析习题参考解答]第1章 线性空间

    1. 证明定理 1. 2. 验证上述结论. 3. 证明定理 3. 4. 证明定理 4. 证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1} ...

  3. [PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间

    1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen ...

  4. [PeterDLax著泛函分析习题参考解答]第7章 Hilbert 空间结果的应用

    1. 对测度是 $\sigma$ 有限的情形证明 Radon-Nikodym 定理. 证明: 设 $\mu,\nu$ 均为 $\sigma$ 有限的非负测度, 则存在分割 $$\bex X=\cup_ ...

  5. [PeterDLax著泛函分析习题参考解答]第4章 Hahn-Bananch 定理的应用

    1. 证明: 若在 4.1 节中取 $S=\sed{\mbox{正整数}}$, $Y$ 是收敛数列构成的空间, $\ell$ 由 (14) 式定义, 则由 (4) 给出的 $p$ 和由 (11) 定义 ...

  6. [PeterDLax著泛函分析习题参考解答]第3章 Hahn-Banach 定理

    1. 证明 $(10'$). 证明: $\ra$: 由 $p_K(x)<1$ 知 $$\bex \exists\ 0<a<1,\st \cfrac{x}{a}\in K. \eex$ ...

  7. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  8. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  9. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

随机推荐

  1. ORACLE 关连更新 update select

    总结:  关键的地方是where 语句的加入. 在11G中, 如果不加11G , 或造成除匹配的行数更新为相应的值之后, 其余的会变成负数. 所以, 测试的办法就是:  先查看需要更新的数量即连接的数 ...

  2. 类库探源——System.Configuration 配置信息处理

    按照MSDN描述 System.Configuration 命名空间 包含处理配置信息的类型 本篇文章主要两方面的内容 1. 如何使用ConfigurationManager 读取AppSetting ...

  3. 使用Eclipse提供的Axis1.x生成WSDL文件以及Server和Client代码

    使用Eclipse自带的Axis 1.x来创建一个web service应用的服务端和客户端 Axis 是SOAP WebService协议实现,SOAP实质上是一个基于HTTP POST的请求,以X ...

  4. LA 3902 Network(树上最优化 贪心)

    Network Consider a tree network with n <tex2html_verbatim_mark>nodes where the internal nodes ...

  5. C/C++中memset函数

    本文学习参考http://baike.baidu.com/link?url=ZmSyY8ciB_nJt9KM-W2fiEFJrC2mugFsLqRdY2b4pLe8rD_jRXyN7_pj0GBBD2 ...

  6. caffe源码阅读(3)-Datalayer

    DataLayer是把数据从文件导入到网络的层,从网络定义prototxt文件可以看一下数据层定义 layer { name: "data" type: "Data&qu ...

  7. EOF是什么?

    转自http://www.ruanyifeng.com/blog/2011/11/eof.html 学习C语言的时候,遇到的一个问题就是EOF. 它是end of file的缩写,表示"文字 ...

  8. 菜鸟的MySQL学习笔记(三)

    4-1插入记录INSERT INSERT [INTO] tbl_name [(col_name)] {VALUES|VALUE} ({expr|DEFAULT},...), (...), ...   ...

  9. main(int argc , char *argv[])

    #include <unistd.h>#include <stdlib.h>#include <stdio.h> int main(int argc, char * ...

  10. H-UI的前端处理验证,判断是否已经存在,比较健全的模板,可以自己添加一些校验

    <input type="text" class="input-text" value="${detail.supportingname }&q ...