DAG模型——嵌套矩阵
有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路、最短路或路径计数问题。
嵌套矩阵
有n个矩阵,每个矩阵可以用两个整数a,b描述,表示它的长和宽。矩阵X(a,b)可以嵌套在矩阵Y(c,d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩阵X旋转90。)例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)内。你的任务是选出尽量多的矩阵排成一行,使得除了最后一个只之外,每一个矩形都可以嵌套在下一个矩形内。
分析:
矩阵之间的“可嵌套”关系是一个典型的二元关系,二元关系可以用图来建模。如果矩形X可以嵌套在矩形Y里,我们就从X到Y连一条有向边,这个图是无环的,因为一个矩形无法直接或者间接地嵌套在自己内部。换句话说,它是一个DAG,我们的任务便是求DAG上的最长路径。
设d(i)表示从结点i 出发的最长路长度。第一步只能到它的相邻点,d(i) = max{d(j)+1|(i,j)属于E},其中E是边集。最终答案是所有d(i)中的最大值。假设用邻接矩阵保存在矩阵G中。
记忆化搜索代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define maxn 1000
using namespace std;
int G[maxn][maxn], a[maxn], b[maxn], d[maxn], n, answer;
int dp(int i)
{
int& ans = d[i];
if (ans > ) return ans;
ans = ;
for(int j = ; j <= n; ++j) if(G[i][j]) ans = max(ans, dp(j)+);
return ans;
}
void print_ans(int i)
{
printf("%d(%d, %d) ", i, a[i], b[i]);
for(int j = ; j <= n; ++j) if(G[i][j] && d[j]+ == d[i])
{
print_ans(j);
break;
}
} int path[maxn] = {}, cnt = ;
void print_all(int i)
{
//输出所有符合条件的路径
path[++cnt] = i;
if(cnt == answer)
{
for(int j = ; j <= cnt; ++j) printf("%d(%d, %d) ", path[j], a[path[j]], b[path[j]]);
printf("\n");
}
else for(int j = ; j <= n; ++j) if(G[i][j] && d[j]+ == d[i])
{
print_all(j);
}
--cnt;
}
/*
//作者的方法
int path[maxn];
void print_all(int cur, int i) {
path[cur] = i;
if(d[i] == 1) {
for(int j = 0; j <= cur; j++) printf("%d ", path[j]);
printf("\n");
}
for(int j = 1; j <= n; j++) if(G[i][j] && d[i] == d[j]+1)
print_all(cur+1, j);
}
*/
int main()
{
freopen("9-2.in", "r", stdin);
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%d%d", a+i, b+i);
memset(G, , sizeof(G));
for(int i = ; i <= n; ++i)
for(int j = ; j <= n; ++j) if((a[i]>a[j]&&b[i]>b[j])||(a[i]>b[j]&&b[i]>a[j]))
G[i][j] = ;
int t, s;
answer = -;
memset(d, , sizeof(d));
for (int i = ; i <= n; ++i)
{
t = dp(i);
if(answer < t)
{
answer = t;
s = i;
}
}
printf("%d\n", answer);
print_ans(s);
printf("\nAll routes:\n");
//print_all(0, s);
print_all(s);
return ;
}
另一代码如下:
//另附0ms 236kb的DP思路:按边长降序排序,用类似LIS的方法求解,只是比较元素大小的方法变成了比较长和宽
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define maxn 1008
using namespace std;
int G[maxn][maxn], a[maxn], b[maxn], d[maxn], n;
int dp(int i)
{
int& ans = d[i];
if (ans > ) return ans;
ans = ;
for(int j = ; j <= n; ++j) if(G[i][j]) ans = max(ans, dp(j)+);
return ans;
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%d%d", a+i, b+i);
memset(G, , sizeof(G));
for(int i = ; i <= n; ++i)
for(int j = ; j <= n; ++j) if((a[i]>a[j]&&b[i]>b[j])||(a[i]>b[j]&&b[i]>a[j]))
G[i][j] = ;
int ans = -, t, s;
memset(d, , sizeof(d));
for (int i = ; i <= n; ++i)
{
t = dp(i);
if(ans < t)
{
ans = t;
s = i;
}
}
printf("%d\n", ans);
}
return ;
}
DAG模型——嵌套矩阵的更多相关文章
- NYOJ16|嵌套矩形|DP|DAG模型|记忆化搜索
矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a& ...
- UVA103 dp基础题,DAG模型
1.UVA103 嵌套n维空间 DAG模型记忆化搜索,或者 最长上升子序列. 2.dp[i]=max( dp[j]+1),(第i个小于第j个) (1) //DAG模型记忆化搜索 #include< ...
- WEBGL学习【四】模型视图矩阵
<html lang="zh-CN"> <!--服务器运行地址:http://127.0.0.1:8080/webgl/LearnNeHeWebGL/NeHeWe ...
- OpenGL(五) 三维变换之模型视图矩阵
计算机三维图形学中,一个基本的任务是如何描述三维空间中一个物体位置的变化,也就是如何 描述物体的运动.通常情况下,物体位置的变化包含三个基本的变化:平移.旋转和缩放,物体的运动也可以用这三个基本的运动 ...
- HDU 1588 矩阵快速幂 嵌套矩阵
这个题目搞了我差不多一个下午,之前自己推出一个公式,即 f[n+k]=k*f[n]+f[n-1]结果发现根本不能用,无法降低复杂度. 后来又个博客的做法相当叼,就按他的做法来了 即 最终求得是 S(n ...
- DAG上的动态规划——嵌套矩阵问题
问题描述:有n个矩形,每个矩形可以用两个整数a,b描述,表示它的长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩形X旋 ...
- DAG模型(矩形嵌套)
推荐在线例题:http://acm.nyist.net/JudgeOnline/problem.php?pid=16 题摘: 矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难 ...
- DAG模型
数字三角形: 1.递归计算 int solve(int i,int j) { :max(solve(i+,j),solve(i+,j+))); } 2.记忆化搜索,不用指明计算顺序,并且保证每个状态只 ...
- DAG 模型 stacking boxes 动态规划
题目:UVA 103 stacking boxes 题目大意: 给你两个数,一个是盒子的个数,一个是每一个盒子的维数.将一个个盒子互相装起来,让你求最多可以装多少个,要求字典序最小. 解析:这个就是盒 ...
随机推荐
- UVA11324 The Largest Clique(DP+缩点)
题意:给一张有向图G,求一个结点数最大的结点集,使得该结点中任意两个结点 u 和 v满足:要么 u 可以到达 v, 要么 v 可以到达 u(u 和 v 相互可达也可以). 分析:”同一个强连通分量中的 ...
- JUnit学习总结
Junit简介: Junit最初是由Erich Gamma 和 Kent Beck 编写的一个回归测试框架(regression testing framework),为单元测试(Unit Test) ...
- Scala学习笔记(二)表达式和函数
笔记的整理主要针对Scala对比Java的新特性: 1.if表达式 if表达式是有结果返回的. val a= if (5>2) "你好" else 1 a的值为if表达式 ...
- HW4.32
import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner i ...
- JBPM学习(六):详解流程图
概念: 流程图的组成: a. 活动 Activity / 节点 Node b. 流转 Transition / 连线(单向箭头) c. 事件 1.流转(Transition) a) 一般情况一个活动中 ...
- window下 Mongodb无法访问28107的有关问题(转)
原文链接:http://www.myexception.cn/go/1956868.html Mongodb无法访问28107的问题 0:环境 os:window7 64位 mongodb版本:3.0 ...
- Identity-第一章
本篇文章内容搭建Identity项目,实现几个用户基本的功能,了解Identity具体是什么. 一.Identity入门 Identity是微软在ASP.NET应用程序中管理用户的一个新的API. 1 ...
- Ubuntu 12.04 64bit 配置完android 5.0编译环境后出现“could not write bytes: Broken pipe.”而无法进入输入帐号密码的登陆界面
Ubuntu 12.04 64bit 配置完android 5.0编译环境后出现“could not write bytes: Broken pipe.”而无法进入输入帐号密码的登陆界面.上网问了问百 ...
- windows下把Apache加入系统服务
始 --- 运行,输入cmd,再打开一个命令提示符.分别输入如下命令(每行回车) cd到Apache24\binhttpd.exe-k install-n"servicename" ...
- 得到当前堆栈信息的两种方式(Thread和Throwable)的纠结
今天进行slf4j中logger的同步封装.主要目的是为了以后方便更换日志实现系统. 遇到的问题:使用Thread.currentThread().getStackTrace()[1].getClas ...