三角形最小路径和 Triangle

数组 动态规划

问题

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

例如,给定三角形:

     [2],
[3,4],
[6,5,7],
[4,1,8,3]

自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

方法声明:

class Solution {
public int minimumTotal(List<List<Integer>> triangle) { }
}

动态规划(基础)

分析

如果只是简单分析的话,这道题和其他动态规划没啥区别,问题是代码写起来可能稍有点麻烦。

用动态规划分析的关键是发现递推式,我们定义一个二维数组 dp,其中 dp[i][j] 的含义为:

dp[i][j]:到达三角形第 i 行 第 j 那个元素所需要的最小步数

那么我们就可以分析出 dp[i][j] 的值的规律,所以很明显,递推式是这样的:

dp[i][j] = V(i,j) + min(dp[i-1][j-1] ,dp[i-1][j])

当然,针对边界元素我们需要单独处理一下,具体的代码实现如下:

代码

class Solution {

    public int minimumTotal(List<List<Integer>> triangle) {
int len = triangle.size();
int[][] total = new int[len][len]; //保存的是到达最后一行各个元素的最短距离
total[0][0] = triangle.get(0).get(0); for (int i = 1; i < len; i++) {
for (int j = 0; j <= i; j++) {
if (j == 0) {
total[i][j] = triangle.get(i).get(j) + total[i - 1][j];
} else if (j == i) {
total[i][j] = triangle.get(i).get(j) + total[i - 1][j - 1];
} else {
total[i][j] = triangle.get(i).get(j) + Math.min(total[i - 1][j], total[i - 1][j - 1]);
}
}
} int min = Integer.MAX_VALUE;
for (int i = 0; i < len; i++) {
min = Math.min(min, total[len - 1][i]);
}
System.out.println(Arrays.toString(total[len - 1])); return min;
}
}

时间复杂度 O(n^2)
空间复杂度 O(n^2)

动态规划(逆向)

分析

假如我们是从倒数第二行(统一称为第 i 行)开始走的话,那么从倒数第二行的第 j 个元素走到最后一行所需要的最小步数为:

P(j) = V(i,j) + min(V(i+1,j),V(i+1,j+1))

我们对倒数第二行的所有元素都进行此计算,并将结果保存到集合 array 中,且 array 的第 j 个元素的值为 P(j)。

我们知道 P(j) 代表的含义为倒数第二行的第 j 个元素走到最后一行所需要的最小步数,所以如果让我们计算从倒数第二行走到最后一行所需要的最小步数,那么我们只需从 array 中选择值最小的那个元素即可。

同样道理,如果让我们从倒数第三行开始走的话,那么我们只需按同样的方式计算从倒数第三行的第 j 个元素走到 array 列 所需要的最小步数即可,而不需要关注倒数第二行和倒数第三行的数了。

经过此步骤后,我们发现问题的规模变小了,动态规划思想也就体现出来了。


遍历过程:

     [2],
[3,4],
[6,5,7],
[4,1,8,3] [2],
[3,4],
[7,6,10], [2],
[9,10], [11]

代码

class Solution {

    public int minimumTotal(List<List<Integer>> triangle) {
int[][] dp = new int[triangle.size() + 1][triangle.size() + 1];// 加1可以不用初始化最后一层
for (int i = triangle.size() - 1; i >= 0; i--) {
List<Integer> curTr = triangle.get(i);
for (int j = 0; j < curTr.size(); j++) {
dp[i][j] = Math.min(dp[i + 1][j], dp[i + 1][j + 1]) + curTr.get(j);
}
}
return dp[0][0];
}
}

时间复杂度 O(n^2)
空间复杂度 O(n^2)

动态规划(逆向 + 优化)

对于上面那种方式,我们可以继续优化。

我们发现在计算倒数第三行时,array 的长度和倒数第二行的长度相同,且有 替换 倒数第二行的效果,所以,我们可以不必再定义一个 array ,而只需把计算的结果赋给倒数第二行即可。

而在计算过程中,我们需要的 array 的长度会越来越小,这没关系,我们只需要关心自己需要的那些元素即可。

class Solution {

    public int minimumTotal(List<List<Integer>> triangle) {
int[] dp = new int[triangle.size() + 1]; // 加1可以不用初始化最后一层 for (int i = triangle.size() - 1; i >= 0; i--) {
List<Integer> curTr = triangle.get(i);
for (int j = 0; j < curTr.size(); j++) {
dp[j] = curTr.get(j) + Math.min(dp[j], dp[j + 1]); //这里的dp[j] 使用的时候默认是上一层的,赋值之后变成当前层
}
}
return dp[0];
}
}

时间复杂度 O(n^2)
空间复杂度 O(n)

实际测试会发现,虽然空间复杂度大大降低了,但是总耗时却增加了。这也很好解释,因为时间复杂度并没有变,而空间复杂度减小又是在建立在增加了计算的基础上的,所以总时间当然会增加了。

JPush 极光推送 消息推送 实例的更多相关文章

  1. ios -- 极光推送《2》--极光推送消息推送成功,但是手机收不到的解决方法

    1.确认证书是否与app的Bundle ID是否一致 2. 确认你的推送证书是否已经过期 3.确认你的APP_KEY是否和极光APP_KEY是否一致 4.正确调用bindChannel,并成功返回ap ...

  2. android热门消息推送横向测评![转]

    关于这个话题,已经不是什么新鲜事了.对于大多数中小型公司一般都是选择第三方的服务来实现.但是现在已经有很多提供推送服务的公司和产品,如何选择一个适合自己项目的服务呢?它们之间都有什么差别?在此为大家做 ...

  3. iOS 消息推送(APNs) 傻瓜式教程

    也可以去我的简书页面查看这篇文章 首先: 1.做iOS消息推送需要真机测试 2.做iOS消息推送需要有付费的开发者账号 是否继续看帖? 先学习一下相关的知识吧! 因为中途可能会遇到一些问题,这篇文章或 ...

  4. iOS开发——消息推送跳转

    项目开发用集成是极光推送JPush     这里主要是消息推送过来处理对应界面跳转          同时看到两篇写的不错的相关博客分享一下:      http://www.jianshu.com/ ...

  5. DWR实现服务器向客户端推送消息

    原文链接 http://www.blogjava.net/stevenjohn/archive/2012/07/07/382447.html这片文章还是给了我很大帮助,再次表示感谢,下面我将这两天的研 ...

  6. app消息推送

    Mui + 个推 实现消息推送 1.首先去个推 注册一个账号,新建一个消息推送应用 2.配置Mui配置文件 3.使用HBuilder 打包 app 4.然后在到个推后台 发送数据 后台Java代码(官 ...

  7. 使用极光推送(www.jpush.cn)向安卓手机推送消息【服务端向客户端主送推送】C#语言

    在VisualStudio2010中新建网站JPushAndroid.添加引用json帮助类库Newtonsoft.Json.dll. 在web.config增加appkey和mastersecret ...

  8. 用JPUSH极光推送实现服务端向安装了APP应用的手机推送消息(C#服务端接口)

    这次公司要我们做一个功能,就是当用户成功注册以后,他登录以后要收到消息,当然这个消息是安装了我们的手机APP应用的手机咯. 极光推送的网站的网址是:https://www.jpush.cn/ 极光推送 ...

  9. Android消息推送——JPush极光推送

    刚看了一篇关于Android消息推送评测总结的博客http://www.cnblogs.com/logan/p/4514635.html: 自己也对原学过的JPush极光进行一下小结,方便后续工作使用 ...

随机推荐

  1. ecshop json类的使用

    ecshop中有2个地方使用了json,一个是cls_json.php文件,一个是transport.js文件. cls_json 封装了json类,可以调用里面的encode的方法,根据参数不同,进 ...

  2. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  3. Light OJ 1104 第六周F题

    F - 概率(经典问题) Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu   Descri ...

  4. bzoj1115: [POI2009]石子游戏Kam

    Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏 ...

  5. css()和 attr()的区别

  6. Spark On YARN内存分配

    本文转自:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 此文解决了Spark ...

  7. BZOJ 3065 带插入区间K小值

    http://www.lydsy.com/JudgeOnline/problem.php?id=3065 思路:替罪羊树套权值线段树. 当替罪羊树某个子树大于某个比利(比例)时就暴力重构,本题时间复杂 ...

  8. 【Java线程】Java线程池ExecutorService

    示例 import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.u ...

  9. hdu 3912 Turn Right

    http://acm.hdu.edu.cn/showproblem.php?pid=3912 这个题我用递归深搜模拟,直接爆栈了.哭啊!为什么! 这个题最主要是能走重复格子,但是方向不一样. 我用的剪 ...

  10. POJ1573 Robot Motion(模拟)

    题目链接. 分析: 很简单的一道题, #include <iostream> #include <cstring> #include <cstdio> #inclu ...