透过表象看本质!?之二——除了最小p乘,还有PCA
如图1所示,最小p乘法求得是,而真实值到拟合曲线的距离为
。那么,
对应的是什么样的数据分析呢?
图1 最小p乘法的使用的误差是。真实值到拟合曲线的距离为
假如存在拟合曲线,设直线方程为。真实值
到该曲线的投影点为
。p=2时,则两点之间的距离为
(37)
(38)
点在直线上,同时
。这两个条件构成如下方程组
(39)
联立上述方程组求得
(40)
代入式(37)(38)得
(41)
上式两边对b求偏导,令偏导数为零得
(42)
化简为
(43)
(44)
令
(45)
(46)
将式(45)(46)代入式(44)得
(47)
(48)
因此,该直线通过均值点,投影点可以改写为
(49)
其中e是直线方向的单位向量。将式(49)代入式(38)得
化简为
(50)
其中。上式中等号右边的第二项是个常量,不影响I取得极值时对应的e,可以去掉。同时,我们假设e是单位向量,则
。重写I如下
(51)
上式两边对e求导得
(52)
化简得
(53)
上式成立时,u取得最大值,I取得最小值。对上两边同时除以(n-1),得到数据矩阵的协方差矩阵。/(n-1)是协方差矩阵的特征值,e是对应的特征向量。上述推导过程可以较为简单的推广到m维空间。对特征值按降序排列,
,其中m为数据变量的维度。
对应着数据的主方向。经过特征向量矩阵的映射,将协方差矩阵投影为对角阵,变量之间的相关性被消除,而数据方差最大的方向就是主方向。
当计算出数据协方差矩阵的特征向量后,我们计算贡献率
(54)
求出
(55)
使用前个特征值和特征向量压缩原来的数据的表达空间,同时还能保证压缩后的数据矩阵损失最小。上述方法就是我们熟悉的PCA。
主方向线通过数据矩阵的均值点,这个点对应的是使用PCA做人脸识别时求出的均值脸。
总结一下PCA的推导过程,
1、去数据变量样本间的均值,并将该均值从数据矩阵中减去,得到零均值矩阵。
2、求零均值数据矩阵的协方差矩阵。
3、求协方差矩阵的特征向量和特征值。
4、按照一定的比例选择特征值和特征向量,实现降维。
上面推导的是线性关系的PCA,对于非线性的数据上面的方法可能会失效。解决方法,使用核函数将数据映射到高维再进行上述分析,这貌似就是kernel PCA。
同时,PCA分析的主方向通过数据的均值。而数据的均值很采样数据紧相关,如果数据中存在粗大误差,那么此时的均值不能反应真实的数据均值。如果不进行预处理,后续的PCA分析很可能会是错误的,达不到预期的效果。因此,对数据进行预处理是很必要的,剔除粗大误差后再进行PCA分析,貌似就是robust PCA。
在PCA推导的过程中,我们可以较为清晰地看到,如果将数据标签揉到推导中,修改优化的目标函数,我们应该能推导出SVM。因此,不同的误差定义,不同的优化目标函数推导出了不同的数据分析方法。无论这些怎么变换花样,其依托的数学思想都是一致的。
说到这里,我们差不多吧数据拟合相关的数据分析方法说了遍,但是说来说去关键问题还是没有触及,我们最关心最希望自动化的东西没有设计,那就是数据的模式,线性的还是非线性的,一阶的还是二阶的等等问题。因为,我们明明可以看到数据在图像上或者几何上呈现出了某种分布,但是却不能通过数学推导自动化的把它从数据中挖出来。
到底能不能是一个终极问题,这个系列的文章只能做个抛砖引玉,希望能够激发出大家的进一步迭代思考,也许这种模式对应的数学公式就在不远处。
透过表象看本质!?之二——除了最小p乘,还有PCA的更多相关文章
- 透过表象看本质!?之三——Kalman滤波
数据拟合能够估计出数据变化的趋势,另外一个同等重要的应用是如何利用这一趋势,预测下一时刻数据可能的值.通俗点儿说,你观察苍蝇(蚊子,蜜蜂)飞了几秒,你也许会想“它下一个时刻可能在哪儿”,“呈现出什么样 ...
- hihoCoder #1127 : 二分图二·二分图最小点覆盖和最大独立集
#1127 : 二分图二·二分图最小点覆盖和最大独立集 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 在上次安排完相亲 ...
- PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...
- 再看.net本质(二)
3.[HTTP协议] 当浏览器寻找到Web服务器的地址之后,浏览器将帮助我们把对服务器的请求转换为一系列参数发送给Web服务器.服务器收到浏览器的请求对数之后,将会分析这些数据并进行处理,然后向浏览 ...
- 从问题看本质: 研究TCP close_wait的内幕
Socket应用服务器TomcatOSUbuntu /* * @author: ahuaxuan * @date: 2010-4-30 */ 最近遇到的一个关于socket.close的问题,在某个 ...
- block本质探寻二之变量捕获
一.代码 说明:本文章须结合文章<block本质探寻一之内存结构>和<class和object_getClass方法区别>加以理解: //main.m #import < ...
- 从问题看本质:socket到底是什么?
一.问题的引入——socket的引入是为了解决不同计算机间进程间通信的问题 1.socket与进程的关系 1).socket与进程间的关系:socket 用来让一个进程和其他的进程互通信息(IPC ...
- 从问题看本质:socket到底是什么(问答式)? .
转自:http://blog.csdn.net/yeyuangen/article/details/6799575 一.问题的引入——socket的引入是为了解决不同计算机间进程间通信的问题 1.so ...
- Web API 处理机制剖析 --- 拨开迷雾看本质
前言 最近开发了几个项目,用到了web api,也通过项目加深了对web api的理解.本文试图从内部原理讲解web api的本质.透过重重迷雾,看清本质,就能更好的把握和利用好web api. 1 ...
随机推荐
- Orchard helloworld
原文链接:http://www.orchardproject.net/docs/Building-a-hello-world-module.ashx 命令行语法:http://www.cnblogs. ...
- Android开发MVP模式解析
http://www.cnblogs.com/bravestarrhu/archive/2012/05/02/2479461.html 在开发Android应用时,相信很多同学遇到和我一样的情况,虽然 ...
- C#&JQ仿网上商城商品条件筛选功能
1.后台绑定: 一种案例: 根据第一级显示第二级,并带有每个二级的“全部”功能: #region 绑定区域 #region 绑定一级区域 ) <= ? : (PageIndex - )) + , ...
- Apache配置命令
Apache的主配置文件: 1.DocumentRoot——指定网站的根目录 提示:该目录必须存在.目录上不能有汉字或空格. 2.DirectoryIndex (1)描述:设置网站的默认首页文件.访问 ...
- CSS边框属性二---border-images
border-images 属性 主要用border-images 属性来制作自适应按钮和tab标签&自适应边框. 例子: border-images:url("img.png&qu ...
- 互联网金融爬虫怎么写-第三课 雪球网股票爬虫(ajax分析)
大家好啊,话说好久没有出来活动了,组织上安排写代码写了很久,终于又被放出来写教程了,感谢大家一直的支持和厚爱,我会一如既往的帮助大家完成爬虫工程师从入门到放弃的升华. 好,Previous on 系 ...
- Mysql笔记【3】-SQL约束
SQL 约束 约束用于限制加入表的数据的类型. 可以在创建表时规定约束(通过 CREATE TABLE 语句),或者在表创建之后也可以(通过 ALTER TABLE 语句). 我们将主要探讨以下几种约 ...
- javee学习-通过ServletContext对象实现数据共享
1,设置值. ServletContext context = this.getServletConfig().getServletContext();//获得ServletContext对象 // ...
- GIS科研站
http://www.3sbase.com/3sbase/ 近年来,地理信息科学发展迅猛,科研人员日益增多,但目前尚缺乏良好的交流平台,致使优秀的科研成果难以推广.同时,对于大量的GIS学生而言,对国 ...
- SGU 260.Puzzle (异或高斯消元)
题意: 有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色.给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同. Solution: ...