GCD Again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2673    Accepted Submission(s): 1123

Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
No? Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!
 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
 
Sample Input
2
4
0
 
Sample Output
0
1
题意:求2到n-1中与n不互质的数的个数,因为欧拉函数求出的是与n互质的数的个数所以用n-el(n)即可,因为大于一所以还要减去1
#include<stdio.h>
#include<string.h>
int el(int n)
{
int i;
int ans=n;
for(i=2;i*i<=n;i++)//用i*i是为了提高运算效率
{
if(n%i==0)
ans=ans/i*(i-1);
while(n%i==0)
n/=i;
}
if(n>1)//为了避免没有运算到1的情况
ans=ans/n*(n-1);
return ans;
}
int main()
{
int n,m,j,i;
while(scanf("%d",&m),m)
{
printf("%d\n",m-el(m)-1);
}
return 0;
}

  

 

hdoj 1787 GCD Again【欧拉函数】的更多相关文章

  1. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  2. hdu 1787 GCD Again (欧拉函数)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  4. uva11426 gcd、欧拉函数

    题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...

  5. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  7. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  8. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  9. GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...

  10. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

随机推荐

  1. web api 跨域请求,ajax跨域调用webapi

    1.跨域问题仅仅发生在Javascript发起AJAX调用,或者Silverlight发起服务调用时,其根本原因是因为浏览器对于这两种请求,所给予的权限是较低的,通常只允许调用本域中的资源,除非目标服 ...

  2. Avoiding “will create implicit index” NOTICE

    执行PgSql避免 notice 信息,执行之前加入以下语句调整报错级别即可: SET CLIENT_MIN_MESSAGES = ‘WARNING’;

  3. Python 函数式编程学习

    描述:通过将函数作为参数,使得功能类似的函数实现可以整合到同一个函数. Before def getAdd(lst): result = 0 for item in lst: result += it ...

  4. 【转】【Top 100 Best Blogs for iOS Developers】

    原文地址:http://www.softwarehow.com/best-blogs-for-ios-developers/ (by JP Zhang | Last updated: Apr 5, 2 ...

  5. pyes-elasticsearch的python客户端使用笔记

    elasticsearch入门:  http://www.qwolf.com/?p=1387 一.重要的概念 http://834945712.iteye.com/blog/1915432 这篇文章很 ...

  6. POJ 1716 Integer Intervals 差分约束

    题目:http://poj.org/problem?id=1716 #include <stdio.h> #include <string.h> #include <ve ...

  7. Entity Framework Code First 数据迁移

    需要在[工具 --> NuGet 程序包管理器 --> 程序包管理器控制台]中输入三个命令: Enable-Migrations (初次迁移时使用) Add-Migration [为本次迁 ...

  8. Discuz!X3.1 全新安装图文教程

    http://www.discuz.net/thread-3456887-1-1.html

  9. String, StringBuffer, StringBuilder比较

    1.见API: String是不可变的字符序列: StringBuffer是线程安全的,可变的字符序列: StringBuilder是可变的字符序列: StringBuffer与String的区别是S ...

  10. delphi-json组件,速度非常快,要比superobject快好几倍

    delphi-json组件,速度非常快,要比superobject快好几倍https://github.com/ahausladen/JsonDataObjectshttp://bbs.2ccc.co ...