Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8610   Accepted: 4147

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
题意:有n头牛,有些牛互相喜欢,他们想要离得越近越好,有的牛相互讨厌,他们想要离得越远越好,现在给你n头牛之间的关系,让你求出第一头牛与第n头之间的最小距离,当最小距离不存在,即存在负环时输出-1,当最短路为任意(即没有最短路,1到n之间不连通)时输出-2
输入:第一行输入三个数n,ML,MD,代表有n头牛,其中相互喜欢的有ML对,相互讨厌的有MD对,接下来ML行三个数a,b,c,代表a牛和b牛之间最多相隔 c 距离,接下来MD
行三个数a,b,c,代表a牛和b牛之间最少相隔 c 距离;
题解:根据题意找到约束条件,然后建图,由题意约束条件为:
一、相互喜欢的:b-a<=c    对应建边为add(a,b,c);
二、相互讨厌的:b-a>=c   ==>   a-b<=-c;    对应建边为add(b,a,-c);
#include<stdio.h>
#include<string.h>
#include<queue>
#define MAX 100000
#define INF 0x3f3f3f
using namespace std;
int head[MAX];
int n,m,s,ans;
int dis[MAX],vis[MAX];
int used[MAX];
struct node
{
int u,v,w;
int next;
}edge[MAX];
void add(int u,int v,int w)
{
edge[ans].u=u;
edge[ans].v=v;
edge[ans].w=w;
edge[ans].next=head[u];
head[u]=ans++;
}
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void getmap()
{
int i,j;
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
while(s--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
}
void spfa(int sx)
{
int i,j;
queue<int>q;
memset(vis,0,sizeof(vis));
memset(used,0,sizeof(used));
for(i=1;i<=n;i++)
dis[i]=i==sx?0:INF;
vis[sx]=1;
used[sx]++;
q.push(sx);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(i=head[u];i!=-1;i=edge[i].next)
{
int top=edge[i].v;
if(dis[top]>dis[u]+edge[i].w)
{
dis[top]=dis[u]+edge[i].w;
if(!vis[top])
{
vis[top]=1;
q.push(top);
used[top]++;
if(used[top]>n)
{
printf("-1\n");
return ;
}
}
}
}
}
if(dis[n]==INF)
printf("-2\n");
else
printf("%d\n",dis[n]);
}
int main()
{
while(scanf("%d%d%d",&n,&m,&s)!=EOF)
{
init();
getmap();
spfa(1);
}
return 0;
}

  

 
 
 

poj 3169 Layout的更多相关文章

  1. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  2. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  3. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  4. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  5. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...

  6. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

  7. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  8. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  9. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

随机推荐

  1. iOS SDwebImage 使用说明

    SDWebImage托管在github上.https://github.com/rs/SDWebImage 这个类库提供一个UIImageView类别以支持加载来自网络的远程图片.具有缓存管理.异步下 ...

  2. State 模式

    State模式中我们将状态逻辑和动作实现进行分离.允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎修改了它的类:在一个状态即将结束的时候启用下一个状态. /////////state.h// ...

  3. div模块变灰

    整站变灰目前没发现什么特别好的办法,但是div(或者其他标签模块)模块变灰方法兼容性还不错. .gay_box{ filter: grayscale(100%); -webkit-filter: gr ...

  4. ubuntu npm 私有库搭建 (npmjs.org 官方版本)

    目标 npm.xxx.com 安装和推送nodejs包 npmui.xxx.com 管理已经推送的nodejs包   安装 couchdb   https://launchpad.net/~couch ...

  5. TCP/IP笔记 应用层(2)——FTP

    1. FTP(File Transfer Protocol) 文件传送协议 FTP 只提供文件传送的一些基本的服务,它使用 TCP 可靠的运输服务.FTP 的主要功能是减少或消除在不同操作系统下处理文 ...

  6. theano中的concolutional_mlp.py学习

    (1) evaluate _lenet5中的导入数据部分 # 导入数据集,该函数定义在logistic_sgd中,返回的是一个list datasets = load_data(dataset) # ...

  7. 如何为企业选择最理想的Linux服务器系统?

    [2013年10月12日 51CTO外电头条]什么样的Linux服务器最合适您的企业?简言之,它需要为员工带来工作所需的理想支持效果. 相对于成百上千种Linux桌面系统,Linux服务器系统的数量其 ...

  8. 试试Navicat和Axere RP Pro吧

    感觉在作头作起和沟通方面,这些东东真是提高不好效率呢~~~ 由于敏感,只作载图.

  9. 手动更改WIN远程桌面端口,要改两个地方的注册表哟

    看到我的服务器有老多人在用桌面连接,虽然进不去,但他们不停地试,浪费掉不少服务器资源,我看到网上有不少关于修改3389的介绍.修改3389的工具,一些工具一点用都没有,纯属扯淡.修改后照样是3389. ...

  10. 解决VS2005 VS2008 vs2010断点无效-源代码与原始版本不同

    网上说的方法:(额~但是我就是不能用.但是也贴出来) 方法1.直接把整个文件格式化了一次,断点就可以用了Ctrl + A全选菜单:编辑-〉高级-〉设置选定内容的格式 (Ctrl+K, Ctrl+F)通 ...