Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8610   Accepted: 4147

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
题意:有n头牛,有些牛互相喜欢,他们想要离得越近越好,有的牛相互讨厌,他们想要离得越远越好,现在给你n头牛之间的关系,让你求出第一头牛与第n头之间的最小距离,当最小距离不存在,即存在负环时输出-1,当最短路为任意(即没有最短路,1到n之间不连通)时输出-2
输入:第一行输入三个数n,ML,MD,代表有n头牛,其中相互喜欢的有ML对,相互讨厌的有MD对,接下来ML行三个数a,b,c,代表a牛和b牛之间最多相隔 c 距离,接下来MD
行三个数a,b,c,代表a牛和b牛之间最少相隔 c 距离;
题解:根据题意找到约束条件,然后建图,由题意约束条件为:
一、相互喜欢的:b-a<=c    对应建边为add(a,b,c);
二、相互讨厌的:b-a>=c   ==>   a-b<=-c;    对应建边为add(b,a,-c);
#include<stdio.h>
#include<string.h>
#include<queue>
#define MAX 100000
#define INF 0x3f3f3f
using namespace std;
int head[MAX];
int n,m,s,ans;
int dis[MAX],vis[MAX];
int used[MAX];
struct node
{
int u,v,w;
int next;
}edge[MAX];
void add(int u,int v,int w)
{
edge[ans].u=u;
edge[ans].v=v;
edge[ans].w=w;
edge[ans].next=head[u];
head[u]=ans++;
}
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void getmap()
{
int i,j;
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
while(s--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
}
void spfa(int sx)
{
int i,j;
queue<int>q;
memset(vis,0,sizeof(vis));
memset(used,0,sizeof(used));
for(i=1;i<=n;i++)
dis[i]=i==sx?0:INF;
vis[sx]=1;
used[sx]++;
q.push(sx);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(i=head[u];i!=-1;i=edge[i].next)
{
int top=edge[i].v;
if(dis[top]>dis[u]+edge[i].w)
{
dis[top]=dis[u]+edge[i].w;
if(!vis[top])
{
vis[top]=1;
q.push(top);
used[top]++;
if(used[top]>n)
{
printf("-1\n");
return ;
}
}
}
}
}
if(dis[n]==INF)
printf("-2\n");
else
printf("%d\n",dis[n]);
}
int main()
{
while(scanf("%d%d%d",&n,&m,&s)!=EOF)
{
init();
getmap();
spfa(1);
}
return 0;
}

  

 
 
 

poj 3169 Layout的更多相关文章

  1. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  2. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  3. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  4. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  5. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...

  6. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

  7. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  8. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  9. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

随机推荐

  1. Memcached认知[分布式]

    Memcached是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载. Memcached的服务器客户端通信使用简单的基于文本行的协议. Memcached基于一个存储键/值对的 ...

  2. 上传图片预览 支持IE8+,FF,Chrome ,保留原图片比例

    代码及效果:链接

  3. mysql 中执行的 sql 注意字段之间的反向引号和单引号

    如下的数据表 create table `test`( `id` int(11) not null auto_increment primary key, `user` varchar(100) no ...

  4. css3学习--css3动画详解二(3d效果)

    一.设置3D场景 perspective:800       //浏览器到物体的距离(像素)perspective-origin:50% (x轴) 50% (y轴)    //视点的位置 transf ...

  5. Java:对象的序列化

    一.对象序列化机制 序列化机制允许将实现序列化的Java对象转换为字节序列,这些字节序列可以被保存在磁盘上或通过网络传输,以备以后重新恢复原来的对象: 序列化机制使得对象可以脱离程序的运行而独立存在: ...

  6. 初级SQL开发汇总指南

    汇总部分内容来自网络(作者  :zhtbs),比较基础的东西,能够了解比较基础的一些东西. Select语句概要 数据库中数据的提取(查询)使用select 语法,主要有以下几点作用 l  提取的数据 ...

  7. Sharepoint 问题集锦 - 配置

    错误 在sharepoint designer中编辑List的表单的时候,提示soap:Server服务器无法处理请求. ---> 值不在预期的范围内. 解释: 这个是由于我在本地测试的时候,使 ...

  8. CoreProfiler/NanoProfiler

    使用CoreProfiler/NanoProfiler实现跨平台&应用的整合性能调试 摘要 NanoProfiler是一个开源.NET性能调试类库,CoreProfiler是其.NET Cor ...

  9. 【Java】WEB-INF目录与META-INF目录的作用

    /WEB-INF/web.xml Web应用程序配置文件,描述了 servlet 和其他的应用组件配置及命名规则. /WEB-INF/classes/包含了站点所有用的 class 文件,包括 ser ...

  10. iOS9 App Thinning(应用瘦身)功能介绍

    iOS9 发布后,产生了一个使 App Thinning 无法正常运行的 bug.在iOS9.0.2 版本中,这个 bug 已经被修复,App Thinning 已经可以正常使用.当你从应用商店(Ap ...