Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8610   Accepted: 4147

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
题意:有n头牛,有些牛互相喜欢,他们想要离得越近越好,有的牛相互讨厌,他们想要离得越远越好,现在给你n头牛之间的关系,让你求出第一头牛与第n头之间的最小距离,当最小距离不存在,即存在负环时输出-1,当最短路为任意(即没有最短路,1到n之间不连通)时输出-2
输入:第一行输入三个数n,ML,MD,代表有n头牛,其中相互喜欢的有ML对,相互讨厌的有MD对,接下来ML行三个数a,b,c,代表a牛和b牛之间最多相隔 c 距离,接下来MD
行三个数a,b,c,代表a牛和b牛之间最少相隔 c 距离;
题解:根据题意找到约束条件,然后建图,由题意约束条件为:
一、相互喜欢的:b-a<=c    对应建边为add(a,b,c);
二、相互讨厌的:b-a>=c   ==>   a-b<=-c;    对应建边为add(b,a,-c);
#include<stdio.h>
#include<string.h>
#include<queue>
#define MAX 100000
#define INF 0x3f3f3f
using namespace std;
int head[MAX];
int n,m,s,ans;
int dis[MAX],vis[MAX];
int used[MAX];
struct node
{
int u,v,w;
int next;
}edge[MAX];
void add(int u,int v,int w)
{
edge[ans].u=u;
edge[ans].v=v;
edge[ans].w=w;
edge[ans].next=head[u];
head[u]=ans++;
}
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void getmap()
{
int i,j;
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
while(s--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
}
void spfa(int sx)
{
int i,j;
queue<int>q;
memset(vis,0,sizeof(vis));
memset(used,0,sizeof(used));
for(i=1;i<=n;i++)
dis[i]=i==sx?0:INF;
vis[sx]=1;
used[sx]++;
q.push(sx);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(i=head[u];i!=-1;i=edge[i].next)
{
int top=edge[i].v;
if(dis[top]>dis[u]+edge[i].w)
{
dis[top]=dis[u]+edge[i].w;
if(!vis[top])
{
vis[top]=1;
q.push(top);
used[top]++;
if(used[top]>n)
{
printf("-1\n");
return ;
}
}
}
}
}
if(dis[n]==INF)
printf("-2\n");
else
printf("%d\n",dis[n]);
}
int main()
{
while(scanf("%d%d%d",&n,&m,&s)!=EOF)
{
init();
getmap();
spfa(1);
}
return 0;
}

  

 
 
 

poj 3169 Layout的更多相关文章

  1. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  2. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  3. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  4. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  5. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...

  6. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

  7. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  8. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  9. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

随机推荐

  1. php redis 【摘自网上,只为参考】

    ubuntu下安装php redis sudo apt-get install redis-server 测试redis是否安装成功:注意:要开启redis redis-cliset test hel ...

  2. JavaScript中Ajax的get和post请求

    AJAX = 异步 JavaScript和XML(Asynchronous JavaScript and XML) 作用:在不重新加载整个网页的情况下,对网页的某部分进行更新.   两种请求方式: 1 ...

  3. ubuntu1404下Apache2.4错误日志error.log路径位置

    首先打开/etc/apache2路径下的apache2.conf文件,找到ErrorLog如下 ErrorLog ${APACHE_LOG_DIR}/error.log 这里{APACHE_LOG_D ...

  4. 【BZOJ3527】【FFT】力

    [问题描述]给出n个数qi,给出Fj的定义如下:令Ei=Fi/qi.试求Ei.[输入格式]输入文件force.in包含一个整数n,接下来n行每行输入一个数,第i行表示qi.[输出格式]输出文件forc ...

  5. jQuery慢慢啃之事件对象(十一)

    1.event.currentTarget//在事件冒泡阶段中的当前DOM元素 $("p").click(function(event) { alert( event.curren ...

  6. js监听鼠标滚动

    //加载顺序问题,不可改变位置    var scrollFunc = function(e){   e = e || window.event;   if (e.wheelDelta) {    i ...

  7. Git版本控制工具使用:Error pulling origin: error: Your local changes to the following files would be overwritten by merge

    摘自: CSDN 逆觞 git在pull时,出现这种错误的时候,可能很多人进进行stash,相关stash的请看:Error pulling origin: error: Your local cha ...

  8. php引用(&)详解及注意事项

    php的引用(就是在变量或者函数.对象等前面加上&符号) 在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容,在内存中存 ...

  9. Attributes(1):反射Attribute并输出

    using System; using System.Reflection; using System.Text;   namespace Attribute01 { class Program { ...

  10. iPhone分辨率

    分辨率和像素 1.iPhone5           4"     分辨率320x568,像素640x1136,@2x 2.iPhone6           4.7"  分辨率3 ...