poj 2068 Nim(博弈树)
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 1501 | Accepted: 845 |
Description
In this game, you have a winning strategy. To see this, you first
remove four stones and leave 96 stones. No matter how I play, I will end
up with leaving 92 - 95 stones. Then you will in turn leave 91 stones
for me (verify this is always possible). This way, you can always leave
5k+1 stones for me and finally I get the last stone, sigh. If we
initially had 101 stones, on the other hand, I have a winning strategy
and you are doomed to lose.
Let's generalize the game a little bit. First, let's make it a team
game. Each team has n players and the 2n players are seated around the
table, with each player having opponents at both sides. Turn around the
table so the two teams play alternately. Second, let's vary the maximum
number of stones each player can take. That is, each player has his/her
own maximum number of stones he/she can take at each turn (The minimum
is always one). So the game is asymmetric and may even be unfair.
In general, when played between two teams of experts, the outcome of
a game is completely determined by the initial number of stones and the
maximum number of stones each player can take at each turn. In other
words, either team has a winning strategy.
You are the head-coach of a team. In each game, the umpire shows
both teams the initial number of stones and the maximum number of stones
each player can take at each turn. Your team plays first. Your job is,
given those numbers, to instantaneously judge whether your team has a
winning strategy.
Incidentally, there is a rumor that Captain Future and her officers
of Hakodate-maru love this game, and they are killing their time playing
it during their missions. You wonder where the stones are? Well, they
do not have stones but do have plenty of balls in the fuel containers!
Input
input is a sequence of lines, followed by the last line containing a
zero. Each line except the last is a sequence of integers and has the
following format.
n S M1 M2 . . . M2n
where n is the number of players in a team, S the initial number of
stones, and Mi the maximum number of stones ith player can take. 1st,
3rd, 5th, ... players are your team's players and 2nd, 4th, 6th, ... the
opponents. Numbers are separated by a single space character. You may
assume 1 <= n <= 10, 1 <= Mi <= 16, and 1 <= S < 2^13.
Output
Sample Input
1 101 4 4
1 100 4 4
3 97 8 7 6 5 4 3
0
Sample Output
0
1
1
Source
【思路】
博弈
构造博弈树,一个局面必胜当且仅当后继局面有至少一个必败局面,一个局面必败当且仅当后继局面都为必胜局面。
记忆化搜索即可。
【代码】
#include<cstdio>
#include<cstring>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int N = 1e4; int f[][N],a[];
int n,m; int dfs(int r,int tot) {
if(r==*n+) r=;
int &ans=f[r][tot];
if(ans!=-) return ans;
if(tot==) return ans=;
if(tot<=a[r]) return ans=;
FOR(i,,a[r])
if(!dfs(r+,tot-i)) return ans=;
return ans=;
} int main() {
while(scanf("%d",&n)== && n) {
scanf("%d",&m);
FOR(i,,*n) scanf("%d",&a[i]);
memset(f,-,sizeof(f));
if(dfs(,m)) puts("");
else puts("");
}
return ;
}
poj 2068 Nim(博弈树)的更多相关文章
- poj 2068 Nim
Nim POJ - 2068 题目大意:多组数据,两人轮流操作,n轮一循环,给出总石子数和这n轮每次两人能取的石子上限(下限为1).取到最后一颗者输. /* f[i][j]表示在第i轮中一共有j个石子 ...
- POJ 2068 Nim#双人dp博弈
http://poj.org/problem?id=2068 #include<iostream> #include<cstdio> #include<cstring&g ...
- POJ 2068 Nim(博弈论)
[题目链接] http://poj.org/problem?id=2068 [题目大意] 给出两队人,交叉放置围成一圈,每个人能取的石子数有个上限,各不相同 轮流取石头,取到最后一块石头的队伍算输,问 ...
- poj 2068 Nim(博弈dp)
Nim Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1403 Accepted: 791 Description Le ...
- poj 2068 Nim 博弈论
思路:dp[i][j]:第i个人时还剩j个石头. 当j为0时,有必胜为1: 后继中有必败态的为必胜态!!记忆化搜索下就可以了! 代码如下: #include<iostream> #incl ...
- POJ 2068 NIm (dp博弈,每个人都有特定的取最大值)
题目大意: 有2n个人,从0开始编号,按编号奇偶分为两队,循环轮流取一堆有m个石子的石堆,偶数队先手,每个人至少取1个,至多取w[i]个,取走最后一个石子的队伍输.问偶数队是否能赢. 分析: 题目数据 ...
- HDU 3404&POJ 3533 Nim积(二维&三维)
(Nim积相关资料来自论文曹钦翔<从"k倍动态减法游戏"出发探究一类组合游戏问题>) 关于Nim积计算的两个函数流程: 代码实现如下: ][]={,,,}; int N ...
- POJ 2975 Nim(博弈论)
[题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...
- [原博客] POJ 2975 Nim 统计必胜走法个数
题目链接题意介绍了一遍Nim取石子游戏,可以看上一篇文章详细介绍.问当前状态的必胜走法个数,也就是走到必败状态的方法数. 我们设sg为所有个数的Xor值.首先如果sg==0,它不可能有必胜走法,输出0 ...
随机推荐
- .NET设计模式(2):单件模式(Singleton Pattern)
转载:http://terrylee.cnblogs.com/archive/2005/12/09/293509.html 单件模式(Singleton Pattern) --.NET设计模式系列之二 ...
- # Day04-Android
Day04-Android 标签(空格分隔): andrroid 1.制作界面 2.在写Activity. Logcat LayoutInflate把Xml转换纯成View的工具. 自定义吐司 Lay ...
- Android开发必备:颜色选择
AA 指定透明度. 00 是完全透明. FF 是完全不透明.超出取值范围的值将被恢复为默认值. ffff00 ffff33 ffff66 ffff99 ffffcc ffffff ffcc0 ...
- What's DB2 模式?
近期负责一个银行方面的项目,需要用到DB2实现多数据库版本切换.初步接触DB2,对于它的管理工具(IBM DATA STUDIO)虽然与ORACLE\MSSQL大同小异,但还是有些东西不一样的.比如什 ...
- 深入理解shared pool共享池之library cache系列二
背景 继续上文:深入理解shared pool共享池之library cache系列一,学习library cache数据结构,本文主要学习library cache object(lco)的数据结构 ...
- 如何在cmd中运行数据库
在开始菜单中输入cmd 在控制板输入:net start MSSQLserver 启动数据库 在控制板输入:net stop MSSQLserver 关闭数据库 在控制板输入:net pur ...
- ios专题 -线程互斥与同步
[原创]http://www.cnblogs.com/luoguoqiang1985 今天遇见了这问题,决定要需要讨论下. 线程同步的方法: @synchronized 官方文档解释:The @syn ...
- ios专题 - APP设计流程
网上看到这篇文章,觉得基本的flow很有帮助,转过来收藏了:作者:关于Sarah Parmenter英国艾塞克斯(英国英格兰东南部的郡)Youknowwho设计工作室的创始人,Sarah Parmen ...
- 数据库学习(整理)----6--Oracle如何快速备份和多次备份数表数据
1.说明: 这里假设一种应用场景! 假设,银行系统中有大量的数据需要及时备份,如何才能快速高效呢! 条件需求: (1).不能设置同步锁(设置的会影响银行正常业务进行!使得银行系统处于维护状态,这是不 ...
- BitMap(比特位)
所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素.由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省. 腾讯面试的时候,让写了一个BitMap ...