Python Tutorial学习(十一)-- Brief Tour of the Standard Library – Part II
11.1. Output Formatting 格式化输出
The repr module provides a version of repr() customized for abbreviated displays of large or deeply nested containers:
>>> import repr
>>> repr.repr(set('supercalifragilisticexpialidocious'))
"set(['a', 'c', 'd', 'e', 'f', 'g', ...])"
The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way that is readable by the interpreter. When the result is longer than one line, the "pretty printer" adds line breaks and indentation to more clearly reveal data structure:
>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
... 'yellow'], 'blue']]]
...
>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],
'white',
['green', 'red']],
[['magenta', 'yellow'],
'blue']]]
The textwrap module formats paragraphs of text to fit a given screen width:
>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""
...
>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.
The locale module accesses a database of culture specific data formats. The grouping attribute of locale's format function provides a direct way of formatting numbers with group separators:
>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
'English_United States.1252'
>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
'1,234,567'
>>> locale.format_string("%s%.*f", (conv['currency_symbol'],
... conv['frac_digits'], x), grouping=True)
'$1,234,567.80'
11.2. Templating
The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users. This allows users to customize their applications without having to alter the application.
The format uses placeholder names formed by $ with valid Python identifiers (alphanumeric characters and underscores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no intervening spaces. Writing $$ creates a single escaped $:
>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'
The substitute() method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute() method may be more appropriate — it will leave placeholders unchanged if data is missing:
>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):
...
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'
Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may elect to use percent signs for placeholders such as the current date, image sequence number, or file format:
>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
... delimiter = '%'
>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format): ')
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f
>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
... base, ext = os.path.splitext(filename)
... newname = t.substitute(d=date, n=i, f=ext)
... print '{0} --> {1}'.format(filename, newname)
img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg
Another application for templating is separating program logic from the details of multiple output formats. This makes it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.
11.3. Working with Binary Data Record Layouts
The struct module provides pack() and unpack() functions for working with variable length binary record formats. The following example shows how to loop through header information in a ZIP file without using the zipfile module. Pack codes "H" and "I" represent two and four byte unsigned numbers respectively. The "<" indicates that they are standard size and in little-endian byte order:
import struct
data = open('myfile.zip', 'rb').read()
start = 0
for i in range(3): # show the first 3 file headers
start += 14
fields = struct.unpack('<IIIHH', data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
start += 16
filename = data[start:start+filenamesize]
start += filenamesize
extra = data[start:start+extra_size]
print filename, hex(crc32), comp_size, uncomp_size
start += extra_size + comp_size # skip to the next header
11.4. Multi-threading
Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve the responsiveness of applications that accept user input while other tasks run in the background. A related use case is running I/O in parallel with computations in another thread.
The following code shows how the high level threading module can run tasks in background while the main program continues to run:
import threading, zipfile
class AsyncZip(threading.Thread):
def __init__(self, infile, outfile):
threading.Thread.__init__(self)
self.infile = infile
self.outfile = outfile
def run(self):
f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print 'Finished background zip of: ', self.infile
background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start()
print 'The main program continues to run in foreground.'
background.join() # Wait for the background task to finish
print 'Main program waited until background was done.'
The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To that end, the threading module provides a number of synchronization primitives including locks, events, condition variables, and semaphores.
While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the Queue module to feed that thread with requests from other threads. Applications using Queue.Queue objects for inter-thread communication and coordination are easier to design, more readable, and more reliable.
11.5. Logging
The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a file or to sys.stderr:
import logging
logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')
This produces the following output:
WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down
By default, informational and debugging messages are suppressed and the output is sent to standard error. Other output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.
The logging system can be configured directly from Python or can be loaded from a user editable configuration file for customized logging without altering the application.
11.6. Weak References
Python does automatic memory management (reference counting for most objects and garbage collection to eliminate cycles). The memory is freed shortly after the last reference to it has been eliminated.
This approach works fine for most applications but occasionally there is a need to track objects only as long as they are being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent. The weakref module provides tools for tracking objects without creating a reference. When the object is no longer needed, it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical applications include caching objects that are expensive to create:
>>> import weakref, gc
>>> class A:
... def __init__(self, value):
... self.value = value
... def __repr__(self):
... return str(self.value)
...
>>> a = A(10) # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d['primary'] = a # does not create a reference
>>> d['primary'] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect() # run garbage collection right away
0
>>> d['primary'] # entry was automatically removed
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
d['primary'] # entry was automatically removed
File "C:/python26/lib/weakref.py", line 46, in __getitem__
o = self.data[key]()
KeyError: 'primary'
11.7. Tools for Working with Lists
Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative implementations with different performance trade-offs.
The array module provides an array() object that is like a list that stores only homogeneous data and stores it more compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers (typecode "H") rather than the usual 16 bytes per entry for regular lists of Python int objects:
>>> from array import array
>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array('H', [10, 700])
The collections module provides a deque() object that is like a list with faster appends and pops from the left side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree searches:
>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print "Handling", d.popleft()
Handling task1
unsearched = deque([starting_node])
def breadth_first_search(unsearched):
node = unsearched.popleft()
for m in gen_moves(node):
if is_goal(m):
return m
unsearched.append(m)
In addition to alternative list implementations, the library also offers other tools such as the bisect module with functions for manipulating sorted lists:
>>> import bisect
>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
>>> bisect.insort(scores, (300, 'ruby'))
>>> scores
[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]
The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is always kept at position zero. This is useful for applications which repeatedly access the smallest element but do not want to run a full list sort:
>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data) # rearrange the list into heap order
>>> heappush(data, -5) # add a new entry
>>> [heappop(data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]
11.8. Decimal Floating Point Arithmetic
The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in float implementation of binary floating point, the class is especially helpful for
- financial applications and other uses which require exact decimal representation,
- control over precision,
- control over rounding to meet legal or regulatory requirements,
- tracking of significant decimal places, or
- applications where the user expects the results to match calculations done by hand.
For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary floating point. The difference becomes significant if the results are rounded to the nearest cent:
>>> from decimal import *
>>> x = Decimal('0.70') * Decimal('1.05')
>>> x
Decimal('0.7350')
>>> x.quantize(Decimal('0.01')) # round to nearest cent
Decimal('0.74')
>>> round(.70 * 1.05, 2) # same calculation with floats
0.73
The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary floating point cannot exactly represent decimal quantities.
Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable for binary floating point:
>>> Decimal('1.00') % Decimal('.10')
Decimal('0.00')
>>> 1.00 % 0.10
0.09999999999999995
>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False
The decimal module provides arithmetic with as much precision as needed:
>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857')
Python Tutorial学习(十一)-- Brief Tour of the Standard Library – Part II的更多相关文章
- Python Tutorial 学习(十)-- Brief Tour of the Standard Library
10.1. Operating System Interface os库 import os os.getcwd() # Return the current working directory 'C ...
- [译]The Python Tutorial#11. Brief Tour of the Standard Library — Part II
[译]The Python Tutorial#Brief Tour of the Standard Library - Part II 第二部分介绍更多满足专业编程需求的高级模块,这些模块在小型脚本中 ...
- Python Tutorial 学习(八)--Errors and Exceptions
Python Tutorial 学习(八)--Errors and Exceptions恢复 Errors and Exceptions 错误与异常 此前,我们还没有开始着眼于错误信息.不过如果你是一 ...
- [译]The Python Tutorial#10. Brief Tour of the Standard Library
[译]The Python Tutorial#Brief Tour of the Standard Library 10.1 Operating System Interface os模块为与操作系统 ...
- Python Tutorial 学习(六)--Modules
6. Modules 当你退出Python的shell模式然后又重新进入的时候,之前定义的变量,函数等都会没有了. 因此, 推荐的做法是将这些东西写入文件,并在适当的时候调用获取他们. 这就是为人所知 ...
- C++学习书籍推荐《The C++ Standard Library 2nd》下载
百度云及其他网盘下载地址:点我 编辑推荐 经典C++教程十年新版再现,众多C++高手和读者好评如潮 畅销全球.经久不衰的C++ STL鸿篇巨著 C++程序员案头必 备的STL参考手册 全面涵盖C++1 ...
- Python Tutorial 学习(四)--More Control Flow Tools
4.1 if 表达式 作为最为人熟知的if.你肯定对这样的一些表达式不感到陌生: >>> x = int(raw_input("Please enter an intege ...
- Python Tutorial 学习(一)--Whetting Your Appetite
Whetting Your Appetite [吊你的胃口]... 这里就直接原文奉上了... If you do much work on computers, eventually you fin ...
- Python Tutorial 学习(九)--Classes
## 9. Classes 类 Compared with other programming languages, Python's class mechanism adds classes wit ...
随机推荐
- 学习 opencv---(9)形态学图像处理(一):膨胀和腐蚀
本篇文章中,我们一起探究了图像处理中,最基本的形态学运算--膨胀与腐蚀.浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试.......... 一.理论 ...
- ubuntu给手机建wifi
声明 笔者近期意外的发现 笔者的个人站点http://tiankonguse.com/ 的非常多文章被其他站点转载,可是转载时未声明文章来源或參考自 http://tiankonguse.com/ 站 ...
- 将文件的图标添加到LISTVIEW中
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- 对MYSQL IFNULL函数的使用进行了具体的叙述
下文对MYSQL IFNULL函数的使用进行了具体的叙述.供您參考学习.假设您在MYSQL IFNULL函数使用方面遇到过类似的问题,最好还是一看. MYSQL IFNULL(expr1,expr2) ...
- SOA体系结构之基础培训教程-大纲篇
引言: 最近受邀做了一个企业的SOA体系结构的内训,本文是内训课程的培训大纲,分享一下吧,希望大家能够喜欢.同时也想针对大纲中列出的内容对SOA架构体系做一次回顾,如果时间允许把完整的课件也想放上来共 ...
- [转] Tomcat 配置 SSL
PS: keystore有自己的访问密码,这个保护层次要低一些,然后keystore里面存有自己的私钥,所以用户要破解的话,既要有keystore,又要有keystore的密码,p12是客户端keys ...
- NDK开发之JNIEnv参数详解
即使我们Java层的函数没有参数,原生方法还是自带了两个参数,其中第一个参数就是JNIEnv. 如下: native方法: public native String stringFromC(); pu ...
- checkbox复选框
改变checkbox状态 所有的jquery版本都可以这样赋值:// $("#cb1").attr("checked","checked") ...
- Base64原理简介
Base64是一种编码方式,通常用于将二进制数据转换成可见字符的形式,该过程可逆. 过程大致如下: 1. 对64个可见字符,进行一个索引编码.索引是二进制的值,对应找到一个可见字符. Base64 编 ...
- 用Module元素实现SharePoint Webpart Page的自动生成
最近研发的项目中开发了很多的WebPart,每次部署这些WebPart到新环境中总是很麻烦,因为自己要新创建WebpartPage,同时还要把这些WebPart放到指定的WebPart页中去: 为了方 ...