Cornfields
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5516   Accepted: 2714

Description

FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find.

FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it.

FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield.

Input

* Line 1: Three space-separated integers: N, B, and K.

* Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc.

* Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1.

Output

* Lines 1..K: A single integer per line representing the difference between the max and the min in each query. 

Sample Input

5 3 1
5 1 2 6 3
1 3 5 2 7
7 2 4 6 1
9 9 8 6 5
0 6 9 3 9
1 2

Sample Output

5
 
二维RMQ问题 
矩形解法:
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
#define N 255 int n,b,k;
int val[N][N];
int mx[N][N][][];
int mi[N][N][][]; void ST(int n,int m)
{
int i,j,r,c;
for(i=;i<=n;i++)
{
for(j=;j<=m;j++)
{
mx[i][j][][]=mi[i][j][][]=val[i][j];
}
}
int kn=(int)(log(double(n))/log(2.0));
int km=(int)(log(double(m))/log(2.0));
for(i=;i<=kn;i++)
{
for(j=;j<=km;j++)
{
if(i== && j==) continue;
for(r=;r+(<<i)-<=n;r++)
{
for(c=;c+(<<j)-<=m;c++)
{
if(i==)
{
mx[r][c][i][j]=max(mx[r][c][i][j-],mx[r][c+(<<(j-))][i][j-]);
mi[r][c][i][j]=min(mi[r][c][i][j-],mi[r][c+(<<(j-))][i][j-]);
}
else
{
mx[r][c][i][j]=max(mx[r][c][i-][j],mx[r+(<<(i-))][c][i-][j]);
mi[r][c][i][j]=min(mi[r][c][i-][j],mi[r+(<<(i-))][c][i-][j]);
}
}
}
}
}
} int RMQ(int r1,int c1,int r2,int c2)
{
int kr=(int)(log(double(r2-r1+))/log(2.0));
int kc=(int)(log(double(c2-c1+))/log(2.0)); int t1=mx[r1][c1][kr][kc];
int t2=mx[r2-(<<kr)+][c1][kr][kc];
int t3=mx[r1][c2-(<<kc)+][kr][kc];
int t4=mx[r2-(<<kr)+][c2-(<<kc)+][kr][kc]; int m1=mi[r1][c1][kr][kc];
int m2=mi[r2-(<<kr)+][c1][kr][kc];
int m3=mi[r1][c2-(<<kc)+][kr][kc];
int m4=mi[r2-(<<kr)+][c2-(<<kc)+][kr][kc]; return max(max(t1,t2),max(t3,t4))-min(min(m1,m2),min(m3,m4));
} int main()
{
int i,j;
scanf("%d%d%d",&n,&b,&k);
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
scanf("%d",&val[i][j]);
}
}
ST(n,n);
while(k--)
{
int r1,c1,r2,c2;
scanf("%d%d",&r1,&c1);
r2=r1+b-;
c2=c1+b-;
printf("%d\n",RMQ(r1,c1,r2,c2));
}
return ;
}

正方形解法:

#include <stdio.h>
#include <iostream>
#include <math.h>
using namespace std;
#define inf 0x7fffffff
#define N 255
#define max(a,b) a>b?a:b
#define min(a,b) a<b?a:b int n,b,k;
int val[N][N];
int mx[N][N][];
int mi[N][N][]; int getMax(int x,int y,int p)
{
int res=-inf;
res=max(res,mx[x][y][p]);
if(x+(<<p)<=n) res=max(res,mx[x+(<<p)][y][p]);
if(y+(<<p)<=n) res=max(res,mx[x][y+(<<p)][p]);
if(x+(<<p)<=n && y+(<<p)<=n) res=max(res,mx[x+(<<p)][y+(<<p)][p]);
return res;
}
int getMin(int x,int y,int p)
{
int res=inf;
res=min(res,mi[x][y][p]);
if(x+(<<p)<=n) res=min(res,mi[x+(<<p)][y][p]);
if(y+(<<p)<=n) res=min(res,mi[x][y+(<<p)][p]);
if(x+(<<p)<=n && y+(<<p)<=n) res=min(res,mi[x+(<<p)][y+(<<p)][p]);
return res;
} void ST()
{
int i,j,k;
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
mx[i][j][]=mi[i][j][]=val[i][j];
}
}
int kn=(int)(log(n*1.0)/log(2.0)); for(k=;k<=kn;k++)
{
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
mx[i][j][k]=getMax(i,j,k-);
mi[i][j][k]=getMin(i,j,k-);
}
}
}
} int RMQMAX(int x,int y,int b)
{
int p=(int)(log(b*1.0)/log(2.0));
int res=-inf;
res=max(res,mx[x][y][p]);
if(x+b-(<<p)<=n) res=max(res,mx[x+b-(<<p)][y][p]);
if(y+b-(<<p)<=n) res=max(res,mx[x][y+b-(<<p)][p]);
if(x+b-(<<p)<=n && y+b-(<<p)<=n) res=max(res,mx[x+b-(<<p)][y+b-(<<p)][p]);
return res;
} int RMQMIN(int x,int y,int b)
{
int p=(int)(log(b*1.0)/log(2.0));
int res=inf;
res=min(res,mi[x][y][p]);
if(x+b-(<<p)<=n) res=min(res,mi[x+b-(<<p)][y][p]);
if(y+b-(<<p)<=n) res=min(res,mi[x][y+b-(<<p)][p]);
if(x+b-(<<p)<=n && y+b-(<<p)<=n) res=min(res,mi[x+b-(<<p)][y+b-(<<p)][p]);
return res;
} int main()
{
int i,j;
scanf("%d%d%d",&n,&b,&k);
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
scanf("%d",&val[i][j]);
}
}
ST();
while(k--)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",RMQMAX(x,y,b)-RMQMIN(x,y,b));
}
return ;
}

[POJ 2019] Cornfields的更多相关文章

  1. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  2. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

  3. POJ 2019 Cornfields(二维RMQ)

    相比以前的RMQ不同的是,这是一个二维的ST算法 #include<iostream> #include<cstring> #include<cstdio> #in ...

  4. POJ 2019 Cornfields 二维线段树的初始化与最值查询

    模板到不行.. 连更新都没有.. .存个模板. 理解留到小结的时候再写. #include <algorithm> #include <iostream> #include & ...

  5. Cornfields POJ - 2019(二维RMQ板题)

    就是求子矩阵中最大值与最小值的差... 板子都套不对的人.... #include <iostream> #include <cstdio> #include <sstr ...

  6. poj 2019 二维rmq *

    题目大意:给出一个N*N矩形,每个格子上有一个价值.询问一个b*b的矩形在左上角的位置(x,y),(x+b-1,y+b-1)这一部分的最大值-最小值是多少. 模板题 #include <stdi ...

  7. 二维 ST POJ 2019

    题目大意:给你一个n*n的矩阵,每次给你一个点(x,y),以其为左上角,宽度为b的矩阵中最小的数值和最大数值的差是多少?  一共k个询问. 思路:简单的二维st. 定义dp(i,j,k,L)表示以(i ...

  8. POJ 2019

    简单的RMQ,可我怎么写都WA.不明白,找了一个和我相似的贴过了,要赶着去外婆家. #include <iostream> #include <algorithm> #incl ...

  9. poj 动态规划题目列表及总结

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

随机推荐

  1. [PR & ML 1] [Introduction] Informal Basic Concepts

    最近还没更完OpenCV又开了新坑,谁教machine learning处在紧急又重要的地位呢.更新的内容总结自Pattern Recognition and Machine Learning by ...

  2. [leetcode] 399. Evaluate Division

    我是链接 看到这道题,2个点和一个权值,然后想到图,但是leetcode就是这样,没给数据范围,感觉写起来很费劲,然后就开始用图来做,添加边的时候,注意正向边和反向变,然后查询的时候,先判断2个点是否 ...

  3. 【转】mysql in语句优化

    mysql会对sql语句做优化, in 后面的条件不超过一定数量仍然会使用索引.mysql 会根据索引长度和in后面条件数量判断是否使用索引. 另外,如果是in后面是子查询,则不会使用索引. 一个文章 ...

  4. Linux C 程序 输入输出函数(THREE)

    标准输入输出函数#include<stdio.h>stdio 是 standard input & output 的缩写 字符数据输入输出函数: putchar() , getch ...

  5. winFrom窗体样式

    ControlBox窗口样式:确定窗体是否有"控件/系统"菜单框. 设置为隐藏 False AutoSizeMode  GrowAndShrink 指定用户界面元素自动调整自身大小 ...

  6. select框默认样式去除(ie中隐藏默认下拉图标)

    html代码 <select class="info-select"> <option selected="selected">1< ...

  7. 产生一个长度为100的int数组,并向其中随机插入1-100,不能重复

    ]; ArrayList myList=new ArrayList(); Random rnd=new Random(); ) { ,); if(!myList.Contains(num)) myLi ...

  8. 软件测试 -- Bug等级划分规范

    1. Blocker级别——中断缺陷 客户端程序无响应,无法执行下一步操作. 2. Critical级别――临界缺陷,包括: 功能点缺失,客户端爆页. 3. Major级别——较严重缺陷,包括: 功能 ...

  9. Appdelegate 导航操作

    隐藏返回按钮 self.navigationItem.hidesBackButton = YES; 设置导航的透明度 self.navigationController.navigationBar.t ...

  10. Git权威指南 读笔(4)

    第12章 改变历史: $ git commit --amend -m "Remove hello.h, which is useless." 修改提交说明 $ git log -- ...