Cornfields
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5516   Accepted: 2714

Description

FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find.

FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it.

FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield.

Input

* Line 1: Three space-separated integers: N, B, and K.

* Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc.

* Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1.

Output

* Lines 1..K: A single integer per line representing the difference between the max and the min in each query. 

Sample Input

5 3 1
5 1 2 6 3
1 3 5 2 7
7 2 4 6 1
9 9 8 6 5
0 6 9 3 9
1 2

Sample Output

5
 
二维RMQ问题 
矩形解法:
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
#define N 255 int n,b,k;
int val[N][N];
int mx[N][N][][];
int mi[N][N][][]; void ST(int n,int m)
{
int i,j,r,c;
for(i=;i<=n;i++)
{
for(j=;j<=m;j++)
{
mx[i][j][][]=mi[i][j][][]=val[i][j];
}
}
int kn=(int)(log(double(n))/log(2.0));
int km=(int)(log(double(m))/log(2.0));
for(i=;i<=kn;i++)
{
for(j=;j<=km;j++)
{
if(i== && j==) continue;
for(r=;r+(<<i)-<=n;r++)
{
for(c=;c+(<<j)-<=m;c++)
{
if(i==)
{
mx[r][c][i][j]=max(mx[r][c][i][j-],mx[r][c+(<<(j-))][i][j-]);
mi[r][c][i][j]=min(mi[r][c][i][j-],mi[r][c+(<<(j-))][i][j-]);
}
else
{
mx[r][c][i][j]=max(mx[r][c][i-][j],mx[r+(<<(i-))][c][i-][j]);
mi[r][c][i][j]=min(mi[r][c][i-][j],mi[r+(<<(i-))][c][i-][j]);
}
}
}
}
}
} int RMQ(int r1,int c1,int r2,int c2)
{
int kr=(int)(log(double(r2-r1+))/log(2.0));
int kc=(int)(log(double(c2-c1+))/log(2.0)); int t1=mx[r1][c1][kr][kc];
int t2=mx[r2-(<<kr)+][c1][kr][kc];
int t3=mx[r1][c2-(<<kc)+][kr][kc];
int t4=mx[r2-(<<kr)+][c2-(<<kc)+][kr][kc]; int m1=mi[r1][c1][kr][kc];
int m2=mi[r2-(<<kr)+][c1][kr][kc];
int m3=mi[r1][c2-(<<kc)+][kr][kc];
int m4=mi[r2-(<<kr)+][c2-(<<kc)+][kr][kc]; return max(max(t1,t2),max(t3,t4))-min(min(m1,m2),min(m3,m4));
} int main()
{
int i,j;
scanf("%d%d%d",&n,&b,&k);
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
scanf("%d",&val[i][j]);
}
}
ST(n,n);
while(k--)
{
int r1,c1,r2,c2;
scanf("%d%d",&r1,&c1);
r2=r1+b-;
c2=c1+b-;
printf("%d\n",RMQ(r1,c1,r2,c2));
}
return ;
}

正方形解法:

#include <stdio.h>
#include <iostream>
#include <math.h>
using namespace std;
#define inf 0x7fffffff
#define N 255
#define max(a,b) a>b?a:b
#define min(a,b) a<b?a:b int n,b,k;
int val[N][N];
int mx[N][N][];
int mi[N][N][]; int getMax(int x,int y,int p)
{
int res=-inf;
res=max(res,mx[x][y][p]);
if(x+(<<p)<=n) res=max(res,mx[x+(<<p)][y][p]);
if(y+(<<p)<=n) res=max(res,mx[x][y+(<<p)][p]);
if(x+(<<p)<=n && y+(<<p)<=n) res=max(res,mx[x+(<<p)][y+(<<p)][p]);
return res;
}
int getMin(int x,int y,int p)
{
int res=inf;
res=min(res,mi[x][y][p]);
if(x+(<<p)<=n) res=min(res,mi[x+(<<p)][y][p]);
if(y+(<<p)<=n) res=min(res,mi[x][y+(<<p)][p]);
if(x+(<<p)<=n && y+(<<p)<=n) res=min(res,mi[x+(<<p)][y+(<<p)][p]);
return res;
} void ST()
{
int i,j,k;
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
mx[i][j][]=mi[i][j][]=val[i][j];
}
}
int kn=(int)(log(n*1.0)/log(2.0)); for(k=;k<=kn;k++)
{
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
mx[i][j][k]=getMax(i,j,k-);
mi[i][j][k]=getMin(i,j,k-);
}
}
}
} int RMQMAX(int x,int y,int b)
{
int p=(int)(log(b*1.0)/log(2.0));
int res=-inf;
res=max(res,mx[x][y][p]);
if(x+b-(<<p)<=n) res=max(res,mx[x+b-(<<p)][y][p]);
if(y+b-(<<p)<=n) res=max(res,mx[x][y+b-(<<p)][p]);
if(x+b-(<<p)<=n && y+b-(<<p)<=n) res=max(res,mx[x+b-(<<p)][y+b-(<<p)][p]);
return res;
} int RMQMIN(int x,int y,int b)
{
int p=(int)(log(b*1.0)/log(2.0));
int res=inf;
res=min(res,mi[x][y][p]);
if(x+b-(<<p)<=n) res=min(res,mi[x+b-(<<p)][y][p]);
if(y+b-(<<p)<=n) res=min(res,mi[x][y+b-(<<p)][p]);
if(x+b-(<<p)<=n && y+b-(<<p)<=n) res=min(res,mi[x+b-(<<p)][y+b-(<<p)][p]);
return res;
} int main()
{
int i,j;
scanf("%d%d%d",&n,&b,&k);
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
scanf("%d",&val[i][j]);
}
}
ST();
while(k--)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",RMQMAX(x,y,b)-RMQMIN(x,y,b));
}
return ;
}

[POJ 2019] Cornfields的更多相关文章

  1. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  2. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

  3. POJ 2019 Cornfields(二维RMQ)

    相比以前的RMQ不同的是,这是一个二维的ST算法 #include<iostream> #include<cstring> #include<cstdio> #in ...

  4. POJ 2019 Cornfields 二维线段树的初始化与最值查询

    模板到不行.. 连更新都没有.. .存个模板. 理解留到小结的时候再写. #include <algorithm> #include <iostream> #include & ...

  5. Cornfields POJ - 2019(二维RMQ板题)

    就是求子矩阵中最大值与最小值的差... 板子都套不对的人.... #include <iostream> #include <cstdio> #include <sstr ...

  6. poj 2019 二维rmq *

    题目大意:给出一个N*N矩形,每个格子上有一个价值.询问一个b*b的矩形在左上角的位置(x,y),(x+b-1,y+b-1)这一部分的最大值-最小值是多少. 模板题 #include <stdi ...

  7. 二维 ST POJ 2019

    题目大意:给你一个n*n的矩阵,每次给你一个点(x,y),以其为左上角,宽度为b的矩阵中最小的数值和最大数值的差是多少?  一共k个询问. 思路:简单的二维st. 定义dp(i,j,k,L)表示以(i ...

  8. POJ 2019

    简单的RMQ,可我怎么写都WA.不明白,找了一个和我相似的贴过了,要赶着去外婆家. #include <iostream> #include <algorithm> #incl ...

  9. poj 动态规划题目列表及总结

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

随机推荐

  1. VS2010 error RC2135: file not found

    VS2010 C++ win32 DLL 工程, 添加 rc 文件, 编辑 String Table. 默认情况下英文版本的 rc 文件能够顺序编译通过,为了让工程支持多语言,将字符串修改为其他语言时 ...

  2. 九度OJ 1533 最长上升子序列 -- 动态规划

    题目地址:http://ac.jobdu.com/problem.php?pid=1533 题目描述: 给定一个整型数组, 求这个数组的最长严格递增子序列的长度. 譬如序列1 2 2 4 3 的最长严 ...

  3. 排序算法THREE:归并排序MergeSort

    /** *归并排序思路:分治法思想 O(nlogn) * 把数组一分为二,二分为四 * 四和为二,二和为一 * */ /** * 归并排序主方法 *@params 待排序的数组 *@params 初始 ...

  4. xps文档打印后winform界面文字丢失

    最近做的xps文档打印功能,绝对的一波三折,一开始开发的时候,始终用的是xps writer 虚拟打印机,测试的时候也是,一直没有发现问题,但是真正到用户使用的时候,接上正式打印机,打印时候没有问题, ...

  5. DataNavigator之分页

    前言 做客户端也有两个月了,先前做列表都没有分页,可能考虑数据也不是很多,昨天做了一个页面,考虑到了数据的问题,所以改为分页查询.因为也是第一次用dev,用哪个控件分页呢,还是要去搜一下,得出的事Da ...

  6. 我对TCP CDG拥塞控制算法的改进和优化

    其实这不是我的优化,我是借用了BBR之力.         借了什么力呢?这是我一再强调的,BBR最大的共享不是为Linux贡献了一个TCP拥塞控制算法(它同时在也BSD上被实现...),而是它重构了 ...

  7. Centos系统mysql 忘记root用户的密码

    Centos系统mysql 忘记root用户的密码: 第一步:(停掉正在运行的mysql) [root@maomao ~]# /etc/init.d/mysqld stop Stopping MySQ ...

  8. EventLog组件

    1.使用EventLog组件读写事件日志 SourceExists方法  确定事件源是否已在本地计算机上注册 DeleteEventSource方法  用于从事件日志中移除应用程序的事件源注册 pri ...

  9. 如何实现一个malloc函数

    一.概述 1.malloc简介 函数所在头文件:<stdlib.h> 函数原型是:void *malloc (size_t n) 函数功能:在内存的动态存储区中分配一个长度为size的连续 ...

  10. 【viewResolver】 springmvc jsp

    <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver"> < ...