The Embarrassed Cryptographer(高精度取模+同余模定理)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 11435 | Accepted: 3040 |
Description

What Odd Even did not think of, was that both factors in a key should be large, not just their product. It is now possible that some of the users of the system have weak keys. In a desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to check if they are strong enough. He uses his very poweful Atari, and is especially careful when checking his boss' key.
Input
Output
Sample Input
143 10
143 20
667 20
667 30
2573 30
2573 40
0 0
Sample Output
GOOD
BAD 11
GOOD
BAD 23
GOOD
BAD 31 题意:k是两个素数的乘积,但k是一个大数,若两个素数中最小的素数不小于l输出“GOOD",否则输出"BAD"和最小的素数;
思路:高精度取模:例如k是“1234567”,转化为千进制后,在kt数组里的形式为kt[1][234][567],在程序里的形式是kt[567][234][1],即整体逆序,局部有序;
同余模定理:如kt[567][234][1]对100取模,
1%100= 1;
(1*1000+234)%100 = 34;
(34*1000+567)%100 = 67;
67!=0,所以原来的k不能被100整除;
#include<stdio.h>
#include<string.h>
const int MAX = ;
int prime[MAX];
char k[];
int l;
int kt[];//将k转化成千进制数存到kt数组里; //素数筛;
void prime_table()
{
int pnum = ,i,j;
prime[pnum++] = ; for(i= ; i <= MAX; i+=)
{
bool flag = true;
for(j = ; prime[j]*prime[j] <= i; j++)
{
if(!(i%prime[j]))
{
flag = false;
break;
}
}
if(flag)
prime[pnum++] = i;
}
} //判断k能否被prime整除,同余模定理;
bool check(int kt[],int prime,int len)
{
int i;
int t = ;
for(i = len-; i >= ; i--)
t = (t*+kt[i])%prime;
if(t)
return false;
return true;
} int main()
{
int i,cnt;
prime_table();
while(~scanf("%s %d",k,&l))
{
if(k[] == '' && l == )
break;
memset(kt,,sizeof(kt)); int lenk = strlen(k); for(i = ; i < lenk; i++)
{
cnt = (lenk+-i)/-;
kt[cnt] = kt[cnt]*+(k[i]-'');
}//将k转化为千进制数,如“1234567”被转化为kt[567][234][1];
int lenkt = (lenk+)/;//kt数组的长度; bool flag = true;
int pnum = ;
while(prime[pnum] < l)
{
if(check(kt,prime[pnum],lenkt))
{
printf("BAD %d\n",prime[pnum]);
flag = false;
break;
}
pnum++;
}
if(flag)
printf("GOOD\n");
}
return ;
}
The Embarrassed Cryptographer(高精度取模+同余模定理)的更多相关文章
- 【阔别许久的博】【我要开始攻数学和几何啦】【高精度取模+同余模定理,*】POJ 2365 The Embarrassed Cryptographer
题意:给出一大数K(4 <= K <= 10^100)与一整数L(2 <= L <= 106),K为两个素数的乘积(The cryptographic keys are cre ...
- POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)
The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...
- (POJ2635)The Embarrassed Cryptographer(大数取模)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13041 Accep ...
- HDU-2303 The Embarrassed Cryptographer 高精度算法(大数取模)
题目链接:https://cn.vjudge.net/problem/HDU-2303 题意 给一个大数K,和一个整数L,其中K是两个素数的乘积 问K的是否存在小于L的素数因子 思路 枚举素数,大数取 ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- [转]组合数取模 Lucas定理
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...
- poj2635(千进制取模+同余模定理)
题目链接:https://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html 题意:给出大数s (s<=10100) ,L (< ...
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
随机推荐
- spring mvc DispatcherServlet详解之一---处理请求深入解析(续)
上文中,我们知道分发过程有以下步骤: 分发过程如下: 1. 判断是否设置了multipart resolver,设置的话转换为multipart request,没有的话则继续下面的步骤. 2. 根据 ...
- Service 如何知道caller
重写Binder的onTransact方法 1 you need to do that in Binder#onTransact method, this is a good place for ...
- css 权威指南笔记(一)
零零散散接触css将近5年,俨然已经成为一个熟练工.如果不是换份工作,我不知道自己差的那么远:在qunar的转正review中我这种“知其然而不知其所以然” 的状况被标明,我才意识到我已停步不前近两年 ...
- java中XMLGregorianCalendar类型和Date类型之间的相互转换
import java.text.SimpleDateFormat;import java.util.Date;import java.util.GregorianCalendar;import ja ...
- c-八进制 转 十进制
概述 其实x进制转十进制的算法都差不多,不过如果是针对于字符形式,他们却有点不同.使用指针和数组的形式计算,又不同.这里演示将字符型的数组形式的八进制转成十进制: #include <stdio ...
- sp_addlinkedserver的一些操作
sp_addlinkedserver 创建一个链接的服务器,使其允许对分布式的.针对 OLE DB 数据源的异类查询进行访问.在使用 sp_addlinkedserver 创建链接的服务器之后,此服务 ...
- ID选择器
在很多方面,ID选择器都类似于类选择符,但也有一些重要的区别: 1.为标签设置id="ID名称",而不是class="类名称". 2.ID选择符的前面是井号(# ...
- java_设计模式_工厂模式_Factory Pattern(2016-08-04)
工厂模式主要是为创建对象提供了接口.工厂模式按照<Java与模式>中的提法分为三类: (1)简单工厂(Simple Factory)模式,又称静态工厂方法模式(Static Factory ...
- SGU 175.Encoding
Solution: 简单题. 答案初始化为1. 从给定的n,q往下推出新的n和q,如果q是在右半边,答案加上 n-n/2. 一直到推到n==1. code: #include <iostream ...
- 我的css reset
@charset "utf-8"; /*reset*/ body,h1,h2,h3,h4,h5,h6,hr,p,blockquote,dl,dt,dd,ul,ol,li,pre,f ...