The Embarrassed Cryptographer(高精度取模+同余模定理)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 11435 | Accepted: 3040 |
Description
The young and very promising cryptographer Odd Even has implemented the security module of a large system with thousands of users, which is now in use in his company. The cryptographic keys are created from the product of two primes, and are believed to be secure because there is no known method for factoring such a product effectively. What Odd Even did not think of, was that both factors in a key should be large, not just their product. It is now possible that some of the users of the system have weak keys. In a desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to check if they are strong enough. He uses his very poweful Atari, and is especially careful when checking his boss' key.
Input
Output
Sample Input
143 10
143 20
667 20
667 30
2573 30
2573 40
0 0
Sample Output
GOOD
BAD 11
GOOD
BAD 23
GOOD
BAD 31 题意:k是两个素数的乘积,但k是一个大数,若两个素数中最小的素数不小于l输出“GOOD",否则输出"BAD"和最小的素数;
思路:高精度取模:例如k是“1234567”,转化为千进制后,在kt数组里的形式为kt[1][234][567],在程序里的形式是kt[567][234][1],即整体逆序,局部有序;
同余模定理:如kt[567][234][1]对100取模,
1%100= 1;
(1*1000+234)%100 = 34;
(34*1000+567)%100 = 67;
67!=0,所以原来的k不能被100整除;
#include<stdio.h>
#include<string.h>
const int MAX = ;
int prime[MAX];
char k[];
int l;
int kt[];//将k转化成千进制数存到kt数组里; //素数筛;
void prime_table()
{
int pnum = ,i,j;
prime[pnum++] = ; for(i= ; i <= MAX; i+=)
{
bool flag = true;
for(j = ; prime[j]*prime[j] <= i; j++)
{
if(!(i%prime[j]))
{
flag = false;
break;
}
}
if(flag)
prime[pnum++] = i;
}
} //判断k能否被prime整除,同余模定理;
bool check(int kt[],int prime,int len)
{
int i;
int t = ;
for(i = len-; i >= ; i--)
t = (t*+kt[i])%prime;
if(t)
return false;
return true;
} int main()
{
int i,cnt;
prime_table();
while(~scanf("%s %d",k,&l))
{
if(k[] == '' && l == )
break;
memset(kt,,sizeof(kt)); int lenk = strlen(k); for(i = ; i < lenk; i++)
{
cnt = (lenk+-i)/-;
kt[cnt] = kt[cnt]*+(k[i]-'');
}//将k转化为千进制数,如“1234567”被转化为kt[567][234][1];
int lenkt = (lenk+)/;//kt数组的长度; bool flag = true;
int pnum = ;
while(prime[pnum] < l)
{
if(check(kt,prime[pnum],lenkt))
{
printf("BAD %d\n",prime[pnum]);
flag = false;
break;
}
pnum++;
}
if(flag)
printf("GOOD\n");
}
return ;
}
The Embarrassed Cryptographer(高精度取模+同余模定理)的更多相关文章
- 【阔别许久的博】【我要开始攻数学和几何啦】【高精度取模+同余模定理,*】POJ 2365 The Embarrassed Cryptographer
题意:给出一大数K(4 <= K <= 10^100)与一整数L(2 <= L <= 106),K为两个素数的乘积(The cryptographic keys are cre ...
- POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)
The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...
- (POJ2635)The Embarrassed Cryptographer(大数取模)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13041 Accep ...
- HDU-2303 The Embarrassed Cryptographer 高精度算法(大数取模)
题目链接:https://cn.vjudge.net/problem/HDU-2303 题意 给一个大数K,和一个整数L,其中K是两个素数的乘积 问K的是否存在小于L的素数因子 思路 枚举素数,大数取 ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- [转]组合数取模 Lucas定理
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...
- poj2635(千进制取模+同余模定理)
题目链接:https://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html 题意:给出大数s (s<=10100) ,L (< ...
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
随机推荐
- [转] 学习React Native必看的几个开源项目
http://www.lcode.org/study-react-native-opensource-one/ http://gold.xitu.io/entry/575f498c128fe10057 ...
- C++ 进阶必备
C++ 进阶要点(原理+熟练使用) 持续更新中 虚函数 虚继承 多继承 构造函数,拷贝构造函数,赋值构造函数,友元类,浅拷贝,深拷贝,运算符重载 class 类的基本使用,iostream获取屏幕输入 ...
- [转] EF Configuring a DbContext
本文转自:https://docs.microsoft.com/en-us/ef/core/miscellaneous/configuring-dbcontext Note This document ...
- PHP获取文件行数
原文出处 提供两种实现方法,但是第一种效率最好 第一种: <?php $file_path = 'test.txt'; //文件路径 此处找一个1094644行的TXT文件 test.txt $ ...
- gulp的点点滴滴
去年用gulp,但一直没有写篇博客,今天有时间无聊写一篇.... 什么是gulp?gulp的官网title上对这个工具有一个比较准确的定义,叫做:基于流的自动化构建工具.如果你查看它的网页源代码,还会 ...
- SQL Server Management Studio 使用作业实现数据库备份
1.数数据库备份脚本: 数据库备份:DECLARE @BcpFile VARCHAR(30),@SQLBACKUP VARCHAR(1000),@BcpFullFile VARCHAR(100) SE ...
- C#获取类中所有方法
var t = typeof(HomeController); //获取所有方法 System.Reflection.MethodInfo[] methods = t.GetMethods(); // ...
- IOS UIColor 自定义颜色
使用 UIColor定义颜色 和 同 CIColor 与 CGColor 之间的联系.转换 1. 利用UIColor展现 #F6F6F6 这个传统的颜色 #F6F6F6 为一个 16 进制表示的RP ...
- 头一回发博客,来分享个有关C++类型萃取的编写技巧
废话不多说,上来贴代码最实在,哈哈! 以下代码量有点多,不过这都是在下一手一手敲出来的,小巧好用,把以下代码复制出来,放到相应的hpp文件即可,VS,GCC下均能编译通过 #include<io ...
- SGU 179.Brackets light
时间限制:0.25s 空间限制:12M 题意 给定一个合法的仅由'(',')'组成的括号序列,求它的下一个合法排列.假定'('<')'. Solution: ...