The Embarrassed Cryptographer(高精度取模+同余模定理)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 11435 | Accepted: 3040 |
Description
The young and very promising cryptographer Odd Even has implemented the security module of a large system with thousands of users, which is now in use in his company. The cryptographic keys are created from the product of two primes, and are believed to be secure because there is no known method for factoring such a product effectively. What Odd Even did not think of, was that both factors in a key should be large, not just their product. It is now possible that some of the users of the system have weak keys. In a desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to check if they are strong enough. He uses his very poweful Atari, and is especially careful when checking his boss' key.
Input
Output
Sample Input
143 10
143 20
667 20
667 30
2573 30
2573 40
0 0
Sample Output
GOOD
BAD 11
GOOD
BAD 23
GOOD
BAD 31 题意:k是两个素数的乘积,但k是一个大数,若两个素数中最小的素数不小于l输出“GOOD",否则输出"BAD"和最小的素数;
思路:高精度取模:例如k是“1234567”,转化为千进制后,在kt数组里的形式为kt[1][234][567],在程序里的形式是kt[567][234][1],即整体逆序,局部有序;
同余模定理:如kt[567][234][1]对100取模,
1%100= 1;
(1*1000+234)%100 = 34;
(34*1000+567)%100 = 67;
67!=0,所以原来的k不能被100整除;
#include<stdio.h>
#include<string.h>
const int MAX = ;
int prime[MAX];
char k[];
int l;
int kt[];//将k转化成千进制数存到kt数组里; //素数筛;
void prime_table()
{
int pnum = ,i,j;
prime[pnum++] = ; for(i= ; i <= MAX; i+=)
{
bool flag = true;
for(j = ; prime[j]*prime[j] <= i; j++)
{
if(!(i%prime[j]))
{
flag = false;
break;
}
}
if(flag)
prime[pnum++] = i;
}
} //判断k能否被prime整除,同余模定理;
bool check(int kt[],int prime,int len)
{
int i;
int t = ;
for(i = len-; i >= ; i--)
t = (t*+kt[i])%prime;
if(t)
return false;
return true;
} int main()
{
int i,cnt;
prime_table();
while(~scanf("%s %d",k,&l))
{
if(k[] == '' && l == )
break;
memset(kt,,sizeof(kt)); int lenk = strlen(k); for(i = ; i < lenk; i++)
{
cnt = (lenk+-i)/-;
kt[cnt] = kt[cnt]*+(k[i]-'');
}//将k转化为千进制数,如“1234567”被转化为kt[567][234][1];
int lenkt = (lenk+)/;//kt数组的长度; bool flag = true;
int pnum = ;
while(prime[pnum] < l)
{
if(check(kt,prime[pnum],lenkt))
{
printf("BAD %d\n",prime[pnum]);
flag = false;
break;
}
pnum++;
}
if(flag)
printf("GOOD\n");
}
return ;
}
The Embarrassed Cryptographer(高精度取模+同余模定理)的更多相关文章
- 【阔别许久的博】【我要开始攻数学和几何啦】【高精度取模+同余模定理,*】POJ 2365 The Embarrassed Cryptographer
题意:给出一大数K(4 <= K <= 10^100)与一整数L(2 <= L <= 106),K为两个素数的乘积(The cryptographic keys are cre ...
- POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)
The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...
- (POJ2635)The Embarrassed Cryptographer(大数取模)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13041 Accep ...
- HDU-2303 The Embarrassed Cryptographer 高精度算法(大数取模)
题目链接:https://cn.vjudge.net/problem/HDU-2303 题意 给一个大数K,和一个整数L,其中K是两个素数的乘积 问K的是否存在小于L的素数因子 思路 枚举素数,大数取 ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- [转]组合数取模 Lucas定理
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...
- poj2635(千进制取模+同余模定理)
题目链接:https://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html 题意:给出大数s (s<=10100) ,L (< ...
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
随机推荐
- 每天一句 linux命令
1. :进入系统根目录 命令: cd / 2. cd .. 返回上一级目录 3. 例3:跳转到指定目录 命令: cd /opt/soft
- Codeforces 552E - Vanya and Brackets【表达式求值】
给一个只有加号和乘号的表达式,要求添加一对括号使得最后结果最大.表达式长度5000,乘号最多12个,表达式中数字只有1位. 左括号一定在乘号右边,右括号一定在乘号左边,因为如果不是这样的话,一定可以调 ...
- jQuery循环给某个ID赋值
1.id名为sl的input框循环赋值 $("input[id=sl]").each(function(){alert(this.value) })
- StructureMap Exception Code: 207 Internal exception while creating Instance '06fc8bd7-76db-47c1-8d71-31090a074f5e' of PluginType QIMS.Repository.IComStaffRepository. Check the inner exception for more
标题翻译: StructureMap异常代码:207内部异常,同时创造PluginType QIMS.Repository.IComStaffRepository的实例“06fc8bd7-76db-4 ...
- Asp.net Mvc 第二回 UrlRouting
一.什么是UrlRouting 你可以使用UrlRouting来配置一些URL的映射,使用户可以按你的规则来访问网站. 使用UrlRouting,一定要规定URL模式,它包括一个位置标识,它将在你请求 ...
- 脚本动态监控input
Jquery $('input').bind('input propertychange', function() { //进行相关操作 }); JS if(isIE) { document.getE ...
- SQL SERVER字符集的研究(中英文字符集,varchar,nvarchar).
一. 试验归类测试SQL: drop table a )) insert into a values('a') insert into a values(N'a') insert into a val ...
- Member var and Static var.
/* member variable and static variable: 1,invoke ways: member variable,also called 'instance' variab ...
- 获取Enum的扩张方法。
public static class EnumExtention { /// <summary> /// 获取枚举的描述信息 /// </summary> /// <t ...
- CSS的inherit与auto使用分析
一个很显浅的寓言,千年老树,电打雷劈,屹立不倒,却毁于蝼蚁的侵袭之下.自以为精通CSS的人,常常被一些小问题搞到头晕脑胀. 通常是一个很小的数值,经过层层放大歪曲后,整个布局就走形了.CSS是一门很简 ...