Description

小 T打算在城市C开设一家外送快餐店。送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近 的地方。 快餐店的顾客分布在城市C的N 个建筑中,这N 个建筑通过恰好N 条双向道路连接起来,不存在任何两条道路连接了相同的两个建筑。任意两个建筑之间至少存在一条由双向道路连接而成的路径。小T的快餐店可以开设在任一建筑 中,也可以开设在任意一条道路的某个位置上(该位置与道路两端的建筑的距离不一定是整数)。 现给定城市C的地图(道路分布及其长度),请找出最佳的快餐店选址,输出其与最远的顾客之间的距离。

Input

第一行包含一个整数N,表示城市C中的建筑和道路数目。
接下来N行,每行3个整数,Ai,Bi,Li(1≤i≤N;Li>0),表示一条道路连接了建筑Ai与Bi,其长度为Li 。

Output

仅包含一个实数,四舍五入保留恰好一位小数,表示最佳快餐店选址距离最远用户的距离。
注意:你的结果必须恰好有一位小数,小数位数不正确不得分。

Sample Input

1 2 1
1 4 2
1 3 2
2 4 1

Sample Output

2.0

HINT

数据范围

对于 10%的数据,N<=80,Li=1;

对于 30%的数据,N<=600,Li<=100;

对于 60% 的数据,N<=2000,Li<=10^9;

对于 100% 的数据,N<=10^5,Li<=10^9

  这个DP有点屌……

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
const int N=;
int n,cnt,fir[N],nxt[N<<],to[N<<];
LL val[N<<],dis[N],ans,sum,Mx;
LL u1[N],v1[N],b[N],c[N];
LL u2[N],v2[N];
bool ring[N];
void addedge(int a,int b,int v){
nxt[++cnt]=fir[a];
val[cnt]=v;
fir[a]=cnt;
to[cnt]=b;
} int ID[N],tot;
int st[N],top;
int pre[N];
void DFS(int x){
ID[x]=++tot;
for(int i=fir[x],y;i;i=nxt[i])
if((y=to[i])!=pre[x]){
if(!ID[y]){
pre[y]=x;
c[y]=val[i];
DFS(y);
}
else if(ID[y]>ID[x]){
while(x!=y){
st[++top]=y;
b[top]=c[y];
ring[y]=true;
y=pre[y];
}
st[++top]=x;
b[top]=val[i];
ring[x]=true;
return;
}
}
} void DP(int x,int fa){
for(int i=fir[x];i;i=nxt[i])
if(to[i]!=fa&&!ring[to[i]]){
DP(to[i],x);
ans=max(ans,dis[x]+dis[to[i]]+val[i]);
dis[x]=max(dis[x],dis[to[i]]+val[i]);
}
} int main(){
freopen("foodshop.in","r",stdin);
freopen("foodshop.out","w",stdout);
scanf("%d",&n);
for(int i=,x,y,v;i<=n;i++){
scanf("%d%d%d",&x,&y,&v);
addedge(x,y,v);addedge(y,x,v);
}
DFS();
for(int i=;i<=top;i++)DP(st[i],); for(int i=;i<=top;i++){
sum+=b[i-];
u1[i]=max(u1[i-],sum+dis[st[i]]);
v1[i]=max(v1[i-],sum+dis[st[i]]+Mx);
Mx=max(Mx,dis[st[i]]-sum);
}
LL tmp=b[top];Mx=sum=b[top]=;
for(int i=top;i>=;i--){
sum+=b[i];
u2[i]=max(u2[i+],sum+dis[st[i]]);
v2[i]=max(v2[i+],sum+dis[st[i]]+Mx);
Mx=max(Mx,dis[st[i]]-sum);
}
LL Mn=v1[top];
for(int i=;i<top;i++)
Mn=min(Mn,max(max(v1[i],v2[i+]),tmp+u1[i]+u2[i+]));
ans=max(ans,Mn);
printf("%.1lf",ans/2.0);
return ;
}

动态规划:NOI2013 快餐店的更多相关文章

  1. bzoj 3242: [Noi2013]快餐店 章鱼图

    3242: [Noi2013]快餐店 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 266  Solved: 140[Submit][Status] ...

  2. P1399 [NOI2013] 快餐店 方法记录

    原题题面P1399 [NOI2013] 快餐店 题目描述 小 T 打算在城市 C 开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小 T 希望快餐店的地址选在离最 ...

  3. bzoj3242 [Noi2013]快餐店

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

  4. 3242: [Noi2013]快餐店 - BZOJ

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

  5. NOI2013 快餐店

    http://uoj.ac/problem/126 总的来说,还是很容易想的,就是有点恶心. 首先,很明显只有一个环. 我们先找出这个环,给各棵树编号id[i],然后各棵树分别以环上的点为根,求出每个 ...

  6. bzoj 3242: [Noi2013]快餐店

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

  7. BZOJ3242/UOJ126 [Noi2013]快餐店

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  8. CF835F Roads in the Kingdom/UOJ126 NOI2013 快餐店 树的直径

    传送门--CF 传送门--UOJ 题目要求基环树删掉环上的一条边得到的树的直径的最小值. 如果直接考虑删哪条边最优似乎不太可做,于是考虑另一种想法:枚举删掉的边并快速地求出当前的直径. 对于环上的点, ...

  9. 【uoj126】 NOI2013—快餐店

    http://uoj.ac/problem/126 (题目链接) 题意 求基环树直径. Solution zz选手迟早退役,唉,右转题解→_→:LCF 细节 拓扑排序的时候度数为0时入队.我在想什么w ...

随机推荐

  1. div css背景图片不显示

    我们在写页面时,为了便于维护,css样式通常都是通过link外部导入html的,有时在css中写入背景图片时,此时背景图片的路径应该是相对css文件的.比如,此时的文件有index.html,css. ...

  2. 如何在windows/wamp环境下在本机配置站点

    1. 在D:\wamp\bin\apache\Apache2.5.4\conf文件夹下,找到httpd.conf,使用记事bej打开它,搜索#Include conf/extra/httpd-vhos ...

  3. PHP代码批量加密

    <?php error_reporting(E_ALL); ini_set('display_errors','1'); //批量加密码当前目录 $dirnow = getcwd(); $dir ...

  4. jQuery 效果 - 淡入淡出

    通过 jQuery,您可以实现元素的淡入淡出效果. 点击展示 淡入/淡出 面板 实例 jQuery fadeIn()演示 jQuery fadeIn() 方法. jQuery fadeOut()演示 ...

  5. SQL三大范式

    第一范式:确保每列的原子性. 如果每列(或者每个属性)都是不可再分的最小数据单元(也称为最小的原子单元),则满足第一范式. 例如:顾客表(姓名.编号.地址.……)其中"地址"列还可 ...

  6. 使用SQL Server 2008远程链接时SQL数据库不成功的解决方法

    关键设置: 第一步(SQL2005.SQL2008): 开始-->程序-->Microsoft SQL Server 2008(或2005)-->配置工具-->SQL Serv ...

  7. VisualStudio2013&VS2015内置SQLServer入门 (三)

    关于LocalDB的部署(publish): 使用本机做服务器(目测不可行) 双击项目的Properties-->Publish-->Application Files,你会发现没有.md ...

  8. java_设计模式_单例模式_Singleton Pattern(2016-08-04)

    概念: 单例模式确保某个类只有一个实例,而且自行实例化并向整个系统提供这个实例. 适用场景: 在计算机系统中,线程池.缓存.日志对象.对话框.打印机.显卡的驱动程序对象常被设计成单例.这些应用都或多或 ...

  9. X3850 Linux 下DSA日志收集办法

    收集工具下载 RHEL 6: 32bit-- [IBM 下载]http://delivery04.dhe.ibm.com/sar/CMA/XSA/03tza/1/ibm_utl_dsa_dsytb7x ...

  10. ccui.ScrollView 扩展

    大多数游戏都有背包这个东西. 道具列表通常用 ScrollView 来实现. 这个ScrollView内部有一个Layout, 滑动都是由移动这个Layout来实现. 道具摆放通常从上往下, 从左到右 ...