Description

  Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
  For example, if you want to exchange 100 US Dollars into
Russian Rubles at the exchange point, where the exchange rate is 29.75,
and the commission is 0.39 you will get (100 - 0.39) * 29.75 =
2963.3975RUR.

  You surely know that there are N different currencies you can
deal with in our city. Let us assign unique integer number from 1 to N
to each currency. Then each exchange point can be described with 6
numbers: integer A and B - numbers of currencies it exchanges, and real R
AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.

  Nick has some money in currency S and wonders if he can
somehow, after some exchange operations, increase his capital. Of
course, he wants to have his money in currency S in the end. Help him to
answer this difficult question. Nick must always have non-negative sum
of money while making his operations.

  只要判断是否存在正权回路。。。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue> using namespace std; const int INF=10e8;
const int MaxN=; struct Edge
{
int v;
double R,C; Edge(int _v,double _R,double _C):v(_v),R(_R),C(_C) {}
}; vector <Edge> E[MaxN];
bool vis[MaxN];
int couNode[MaxN]; bool SPFA(double S,double lowcost[],int n,int start)
{
queue <int> que;
int u,v;
double R,C;
int len; for(int i=;i<=n;++i)
{
lowcost[i]=;
vis[i]=;
couNode[i]=;
}
vis[start]=;
couNode[start]=;
lowcost[start]=S; que.push(start); while(!que.empty())
{
u=que.front();
que.pop(); vis[u]=;
len=E[u].size(); for(int i=;i<len;++i)
{
v=E[u][i].v;
R=E[u][i].R;
C=E[u][i].C; if(lowcost[u]>=C && (lowcost[u]-C)*R>= && (lowcost[u]-C)*R>lowcost[v])
{
lowcost[v]=(lowcost[u]-C)*R; if(!vis[v])
{
vis[v]=;
++couNode[v];
que.push(v); if(couNode[v]>=n)
return ;
}
}
}
} return ;
} inline void addEdge(int u,int v,double R,double C)
{
E[u].push_back(Edge(v,R,C));
} double ans[MaxN]; int main()
{
int N,M,X,u,v;
double S,r1,r2,c1,c2; while(~scanf("%d %d %d %lf",&N,&M,&X,&S))
{
for(int i=;i<=N;++i)
E[i].clear(); for(int i=;i<=M;++i)
{
scanf("%d %d %lf %lf %lf %lf",&u,&v,&r1,&c1,&r2,&c2); addEdge(u,v,r1,c1);
addEdge(v,u,r2,c2);
} if(SPFA(S,ans,N,X))
printf("NO\n");
else
printf("YES\n");
} return ;
}

(简单) POJ 1860 Currency Exchange,SPFA判圈。的更多相关文章

  1. POJ 1860 Currency Exchange (SPFA松弛)

    题目链接:http://poj.org/problem?id=1860 题意是给你n种货币,下面m种交换的方式,拥有第s种货币V元.问你最后经过任意转换可不可能有升值.下面给你货币u和货币v,r1是u ...

  2. POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)

    POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...

  3. 最短路(Bellman_Ford) POJ 1860 Currency Exchange

    题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...

  4. POJ 1860 Currency Exchange 最短路+负环

    原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  5. POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告

    三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...

  6. POJ 1860——Currency Exchange——————【最短路、SPFA判正环】

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  7. POJ 1860 Currency Exchange【SPFA判环】

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  8. 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 711 ...

  9. POJ 1860 Currency Exchange (bellman-ford判负环)

    Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...

随机推荐

  1. OpenGL ES之glUniform函数

    函数名: glUniform 功能: 为当前程序对象指定Uniform变量的值.(译者注:注意,由于OpenGL ES由C语言编写,但是C语言不支持函数的重载,所以会有很多名字相同后缀不同的函数版本存 ...

  2. Ubuntu下修改DNS重启也能用的方法

    1.通过修改:/etc/resolvconf/resolv.conf.d/base(这个文件默认是空的)实现 内容填上需要修改的nameserver

  3. MFC DLL中导出函数模板

    //my.h struct AFX_EXT_CLASS B { }; struct AFX_EXT_CLASS C { }; class AFX_EXT_CLASS A { public: templ ...

  4. Android实现GIF图片解码与播放

    Android实现GIF图片解码与播放 如何在Android中播放GIF图片呢?如果直接按以前的方法,分解图片,可能相对比较麻烦. 今天给大伙介绍一种新的方式,构造自己的Android图片解码帮助类, ...

  5. sql日期

    当我们处理日期时,最难的任务恐怕是确保所插入的日期的格式,与数据库中日期列的格式相匹配. 只要您的数据包含的只是日期部分,运行查询就不会出问题.但是,如果涉及时间部分,情况就有点复杂了. 在讨论日期查 ...

  6. linux shell 远程执行命令

    经常要部署多台服务器上面的应用,如果一个个机器的登录太麻烦. 所有就想到编写一个脚本来部署不同的服务器 前提条件: 配置ssh免登陆 如果不会的请参加我的另外一篇文章 http://blog.csdn ...

  7. Windows API 之 CreateFile、CreateFileMapping 、MapViewOfFile

    CreateFile Creates or opens a file or I/O device. The most commonly used I/O devices are as follows: ...

  8. itext操作PDF文件添加水印

    功能描述:添加图片和文字水印 /** * * [功能描述:添加图片和文字水印] [功能详细描述:功能详细描述] * @param srcFile 待加水印文件 * @param destFile 加水 ...

  9. 9个Console控制台命令(转载)

    一.显示信息的命令 <!DOCTYPE html> <html> <head> <title>常用console命令</title> < ...

  10. alt+shift+j,添加日期、作者等

    在preference->Java->codestyle->codetemplates->commnets->type 可以编辑如: /** * @author ${us ...