Description

You are not given n non-negative integersX0,X1,...,
Xn-1 less than220, but they do exist, and their values never change.

I'll gradually provide you some facts about them, and ask you some questions.

There are two kinds of facts, plus one kind of question:

Format Meaning
I
p v
I tell you
Xp = v
I
p q v
I tell you
Xp XOR Xq = v
Q
k p1 p2...pk
Please tell me the value of
Xp1 XOR Xp2 XOR...XOR Xpk

Input

There will be at most 10 test cases. Each case begins with two integers
n and Q (1n20,
000, 2Q40,
000). Each of the following lines contains either a fact or a question, formatted as stated above. Thek parameter in the questions will be a positive integer not greater than 15, and thev
parameter in the facts will be a non-negative integer less than220. The last case is followed byn =
Q = 0, which should not be processed.

Output

For each test case, print the case number on its own line, then the answers, one on each one. If you can't deduce the answer for a particular question, from the facts I provide youbefore that question, print ``I don't know.",
without quotes. If thei-th fact (don't count questions)cannot be consistent with
all the facts before that, print ``The firsti facts are conflicting.", then keep silence for everything after that (including facts and questions). Print a blank line after the output of
each test case.

Sample Input

2 6
I 0 1 3
Q 1 0
Q 2 1 0
I 0 2
Q 1 1
Q 1 0
3 3
I 0 1 6
I 0 2 2
Q 2 1 2
2 4
I 0 1 7
Q 2 0 1
I 0 1 8
Q 2 0 1
0 0

Sample Output

Case 1:
I don't know.
3
1
2 Case 2:
4 Case 3:
7
The first 2 facts are conflicting.

题意:

有n(n<=20000)个未知的整数X0,X1,X2...Xn-1,有下面Q个(Q<=40000)操作:

    I p v :告诉你Xp=v

    I p q v :告诉你Xp Xor Xq=v

    Q k p1 p2 … pk : 询问 Xp1 Xor Xp2 .. Xor Xpk。 k不大于15。

    假设当前的I跟之前的有冲突的话,跳出   

思路:并查集题目,深深的感到没好好做并查集的无力感,知道是并查集却不知道怎么下手,说一下思路:

1.对于每次的询问,我们并不须要知道每一个数的大小也能够推出来结果,对于这样的: I p v

的我们能够虚拟一个数xn=0,这样就能够有通式p^q=v,由于p^0=p。

虚根xn是不能变的,它的子孙都有确定的值

2.我们如果偏移量val[i]=x[i]^x[fa[i]],还有熟悉a^b = 1 , b^c = 2 , 那么 a^c = 1^2 = 3,还有异或能够互相转化:a^b=c -> a^b^b=c^b -> a = b^c

3.为什么会用到并查集呢,由于对于同一个集合里的话我们能够通过他们与根的偏移量和根的值来知道两个数的异或结果,这样更方便计算,同一时候计算:Q k x1 .. xk 的时候。就能够转化为:(val[x1]^val[x2]..val[xk])^(x[fa[x1]]^x[fa[x2]]..x[fa[xk]]),然后利用异或偶数次不变的原理推断必须是奇数次才有能够得到结果,推断是不是xn根就是了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
using namespace std;
const int MAXN = 20010; int n, m;
int val[MAXN], fa[MAXN]; int find(int x) {
if (x != fa[x]) {
int tmp = fa[x];
fa[x] = find(fa[x]);
val[x] ^= val[tmp];
}
return fa[x];
} int Union(int x, int y, int v) {
int fx = find(x);
int fy = find(y);
if (fx == fy)
return (val[x]^val[y]) == v;
if (fx == n)
swap(fx, fy);
fa[fx] = fy;
val[fx] = val[x]^v^val[y];
return 1;
} int main() {
char str[MAXN];
int p, q, v, k, x;
int cas = 1;
while (scanf("%d%d", &n, &m) != EOF && n+m) {
for (int i = 0; i <= n; i++) {
val[i] = 0;
fa[i] = i;
}
printf("Case %d:\n", cas++);
int facts = 0;
int err = 0;
while (m--) {
scanf("%s", str);
if (str[0] == 'I') {
gets(str);
facts++;
if (err)
continue;
int cnt = sscanf(str, "%d%d%d", &p, &q, &v);
if (cnt == 2) {
v = q;
q = n;
}
if (!Union(p, q, v)) {
err = true;
printf("The first %d facts are conflicting.\n", facts++);
}
} else {
scanf("%d", &k);
int ans = 0;
int is = 1;
map<int, int> mp;
for (int i = 0; i < k; i++) {
scanf("%d", &x);
if (err)
continue;
int f = find(x);
ans ^= val[x];
mp[f]++;
}
if (err)
continue;
map<int, int>::iterator it;
for (it = mp.begin(); it != mp.end(); it++) {
if (it->second % 2) {
if (it->first != n) {
is = 0;
break;
}
else ans ^= val[it->first];
}
}
if (is)
printf("%d\n", ans);
else printf("I don't know.\n");
}
}
printf("\n");
}
return 0;
}

UVA - 12232 Exclusive-OR (并查集扩展偏离向量)的更多相关文章

  1. UVA 12232 Exclusive-OR(并查集+思想)

    题意:给你n个数,接着三种操作: I p v :告诉你 Xp = v I p q v :告诉你 Xp ^ Xq = v Q k p1 p2 … pk:问你k个数连续异或的结果 注意前两类操作可能会出现 ...

  2. POJ 1182 (经典食物链 /并查集扩展)

    (參考他人资料) 向量偏移--由"食物链"引发的总结 http://poj.org/problem?id=1182这道食物链题目是并查集的变型.非常久曾经做的一次是水过的,这次 ...

  3. UVA 11987 - Almost Union-Find(并查集)

    UVA 11987 - Almost Union-Find 题目链接 题意:给定一些集合,操作1是合并集合,操作2是把集合中一个元素移动到还有一个集合,操作3输出集合的个数和总和 思路:并查集,关键在 ...

  4. POJ 2492 并查集扩展(判断同性恋问题)

    G - A Bug's Life Time Limit:10000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u S ...

  5. UVA - 1197 (简单并查集计数)

    Severe acute respiratory syndrome (SARS), an atypical pneumonia of unknown aetiology, was recognized ...

  6. UVA 10158 War(并查集)

    //思路详见课本 P 214 页 思路:直接用并查集,set [ k ]  存 k 的朋友所在集合的代表元素,set [ k + n ] 存 k  的敌人 所在集合的代表元素. #include< ...

  7. UVA - 11987 Almost Union-Find 并查集的删除

    Almost Union-Find I hope you know the beautiful Union-Find structure. In this problem, you're to imp ...

  8. uva 6910 - Cutting Tree 并查集的删边操作,逆序

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  9. UVA - 208 Firetruck(并查集+dfs)

    题目: 给出一个结点d和一个无向图中所有的边,按字典序输出这个无向图中所有从1到d的路径. 思路: 1.看到紫书上的提示,如果不预先判断结点1是否能直接到达结点d,上来就直接dfs搜索的话会超时,于是 ...

随机推荐

  1. c++ 类名和enum时重复时要在类名前加class::

    c++ 类名和enum时重复时要在类名前加class:: 一些不好的习惯都是用小写,但又没有区分开token,看看代码再说,下面的代码是我在测试polymorphism时写的一部分,怎么也查不出,最后 ...

  2. Swift语言Auto Layout入门教程:上篇

    原文:Beginning Auto Layout Tutorial in Swift: Part 1/2,译者:@TurtleFromMars 开始用自动布局约束的方式思考吧! 更新记录:该教程由Br ...

  3. 绘制FastMM内存分配流程图(小块内存分配)

    http://blog.csdn.net/henreash/article/details/38751353

  4. (一)----使用HttpClient发送HTTP请求(通过get方法获取数据)

    (一)----使用HttpClient发送HTTP请求(通过get方法获取数据) 一.HTTP协议初探: HTTP(Hypertext Transfer Protocol)中文 “超文本传输协议”,是 ...

  5. 【IOS实例小计】图像移动--可扩展为动态实现图标变化

    预备知识: 1.页面切换: 从一个ViewController切换到另一个ViewController有下面几种方法: (1)self.view addSubview:(加载的新页面);      相 ...

  6. Java输出当前的日期(年月日时分秒毫秒)

    package test.remote.tools.combine; import java.text.SimpleDateFormat; import java.util.Calendar; imp ...

  7. SharePoint 内容部署-PowerShell

    1. 创建一个新的内容部署路径 New-SPContentDeploymentPath –Name "Marketing Internet Content" –SourceSPWe ...

  8. ZOJ 1654 二分匹配基础题

    题意: 给你一副图, 有草地(*),空地(o)和墙(#),空地上可以放机器人, 机器人向上下左右4个方向开枪(枪不能穿墙),问你在所有机器人都不相互攻击的情况下能放的最多的机器人数. 思路:这是一类经 ...

  9. expression:stream!=NULL

    如果fopen()后返回的是NULL:就不能调用fclose()了: 用fopen()获得的文件句柄不是NULL,那么就需要用fclose()来关闭它.如果是NULL则不需要 null就表示你打开文件 ...

  10. 一款新型的智能家居WiFi选择方案——SimpleWiFi在无线智能家居中的应用

    一款新型的智能家居WiFi选择方案——SimpleWiFi在无线智能家居中的应用 先上图:     随着科学技术的不断发展,局域网也正逐渐向无线化,多网合一的方向发展,在这个多网合一快速发展过程中,带 ...