HDU - 4944 FSF’s game
In this game, players need to divide a rectangle into several same squares.
The length and width of rectangles are integer, and of course the side length of squares are integer.
After division, players can get some coins.
If players successfully divide a AxB rectangle(length: A, width: B) into KxK squares(side length: K), they can get A*B/ gcd(A/K,B/K) gold coins.
In a level, you can’t get coins twice with same method.
(For example, You can get 6 coins from 2x2(A=2,B=2) rectangle. When K=1, A*B/gcd(A/K,B/K)=2; When K=2, A*B/gcd(A/K,B/K)=4; 2+4=6; )
There are N*(N+1)/2 levels in this game, and every level is an unique rectangle. (1x1 , 2x1, 2x2, 3x1, ..., Nx(N-1), NxN)
FSF has played this game for a long time, and he finally gets all the coins in the game.
Unfortunately ,he uses an UNSIGNED 32-BIT INTEGER variable to count the number of coins.
This variable may overflow.
We want to know what the variable will be.
(In other words, the number of coins mod 2^32)
The first line contains an integer T(T<=500000), the number of test cases
Each of the next T lines contain an integer N(N<=500000).
For each test case, you should output "Case #C: ". first, where C indicates the case number and counts from 1.
Then output the answer, the value of that UNSIGNED 32-BIT INTEGER variable.
3
1
3
100
Case #1: 1
Case #2: 30
Case #3: 15662489HintIn the second test case, there are six levels(1x1,1x2,1x3,2x2,2x3,3x3)
Here is the details for this game:
1x1: 1(K=1); 1x2: 2(K=1); 1x3: 3(K=1); 2x2: 2(K=1), 4(K=2); 2x3: 6(K=1); 3x3: 3(K=1), 9(K=3);
1+2+3+2+4+6+3+9=30
题意:给你个n,让你求在n的范围内。是否能将一个矩形分成若干个同样大小为k的正方形,相应有val值,让你统计在n内的全部可能的分数总值
思路:首先我们来试着求解∑i=1nn∗igcd(nk,ik),那么我们能够确定的是假设能够把n∗m的矩形分成大小为k的正方形的话,那么k一定是gcd(n,
i)的因子。那么对于一项来说由于公式能够变形
n∗i∗kgcd(n,i)
-> n∗(ic1+ic2+...)
{k枚举全部的可能},那么cj是n的因子,那么icj就是因子相应的系数,我们再从全部的i来讲。对于因子我们能够计算出全部可能的数,比方因子cj,我们能够得到cj,
2∗cj,
3∗cj,
4∗cj....n,那么相应的系数就是我们须要的icj,累加起来计算是:
num[cj]=(1+2+...+ncj)=(1+ncj)∗(ncj)2
val[n]=∑i=1nnum[i]
ans[n]=ans[n−1]+val[n]
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll __int64
using namespace std;
const int maxn = 500005;
const ll mod = 1ll<<32; ll num[maxn], dp[maxn]; void cal() {
for (ll i = 1; i < maxn; i++)
for (ll j = i; j < maxn; j += i)
num[j] += (j/i+1) * (j/i) / 2;
} void init() {
memset(num, 0, sizeof(num));
cal();
dp[1] = 1;
for (ll i = 2; i < maxn; i++) {
dp[i] = dp[i-1] + num[i]*i;
dp[i] = dp[i] % mod;
}
} int main() {
init();
int t, n, cas = 1;
scanf("%d", &t);
while (t--) {
scanf("%d", &n);
printf("Case #%d: %I64d\n", cas++, dp[n]);
}
return 0;
}
HDU - 4944 FSF’s game的更多相关文章
- hdu 4944 FSF’s game(数论)
题目链接:hdu 4944 FSF's game 题目大意:给定N,能够用不大于N的长a和宽b.组成N∗(N−1)2种不同的矩形,对于每一个矩形a∗b要计算它的值,K为矩形a,b能够拆分成若干个K∗K ...
- HDU 4944 FSF’s game 一道好题
FSF’s game Time Limit: 9000/4500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Tota ...
- HDU 4944 FSF’s game(2014 Multi-University Training Contest 7)
思路: ans[n]= ans[n-1] + { (n,1),(n,2).....(n,n)} 现在任务 是 计算 { (n,1),(n,2).....(n,n)}(k=n的任意因子) 很明显 ...
- HDU 4944 逆序数对
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4911 题意: 给出一个序列,可以相邻的交换k次,求 k 次之后,逆序数对最少是多少: 分析: 可以发现 ...
- HDU 4944
FSF’s game Problem Description FSF has programmed a game.In this game, players need to divide a rect ...
- HDOJ 4944 FSF’s game
http://blog.csdn.net/keshuai19940722/article/details/38519681 不明真相的补一发... FSF's game Time Limit: 900 ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- hdu 4859 海岸线 Bestcoder Round 1
http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...
随机推荐
- oracle中if/else
oracle中if/else功能的实现的3种写法 1.标准sql规范 一.单个IF 1. if a=... then ......... end if; 2. if a=... then .... ...
- Microsoft Visual Studio 发展历史
Microsoft Visual Studio(简称VS)是美国微软公司的开发工具包系列产品.VS是一个基本完整的开发工具集,它包括了整个软件生命周期中所需要的大部分工具,如UML工具.代码管控工具. ...
- 设计模式(七)组合模式Composite(结构型)
设计模式(七)组合模式Composite(结构型) 1. 概述 在数据结构里面,树结构是很重要,我们可以把树的结构应用到设计模式里面. 例子1:就是多级树形菜单. 例子2:文件和文件夹目录 2.问题 ...
- (step7.2.4)hdu 2674(N!Again——简单数论)
题目大意:输入一个整数n,输出N! mod 2009 的结果. 解题思路: 1)任意数 n = ( n / 2009) * 2009 + n % 2009 2)40! mod 2009 等于 2 ...
- App状态管理-AppDelegate
前面提到AppDelegate的实例在UIApplicationMain函数中被创建并调用. AppDelegate的主要作用,可以从其继承类可以看出 class AppDelegate:UIResp ...
- 两个activity之间的数据传递
1.清单文件第二个activity<activity android:name="com.example.twodatapass.ResultActivity" androi ...
- ZOJ 3492 模拟循环链表线性查找
WA了好几次最后找到错因是因为数组开小了! = = string whose length never exceeds 20 所以至少要开到21 = = ,我却一直开20 ╮(╯▽╰)╭ AC代码: ...
- Qt Charts的简单安装与使用
http://blog.qt.io/blog/2016/01/18/qt-charts-2-1-0-release/ 下载地址: https://codereview.qt-project.org/# ...
- Android Activity 常用功能设置(全屏、横竖屏等)
Activity全屏设置 方式1:AndroidManifest.xml <activity android:name="myAcitivty" android:theme ...
- 如何查询一个库文件属于哪个rpm包
1.如果这个库文件已经存在 使用rpm命令: # rpm -qf /file/path (绝对路径) 例如: # rpm -qf /lib/libm.so.6 glibc-2.12-1.47.el ...