Problem Description
FSF has programmed a game.

In this game, players need to divide a rectangle into several same squares.

The length and width of rectangles are integer, and of course the side length of squares are integer.



After division, players can get some coins.

If players successfully divide a AxB rectangle(length: A, width: B) into KxK squares(side length: K), they can get A*B/ gcd(A/K,B/K) gold coins.

In a level, you can’t get coins twice with same method.

(For example, You can get 6 coins from 2x2(A=2,B=2) rectangle. When K=1, A*B/gcd(A/K,B/K)=2; When K=2, A*B/gcd(A/K,B/K)=4; 2+4=6; )



There are N*(N+1)/2 levels in this game, and every level is an unique rectangle. (1x1 , 2x1, 2x2, 3x1, ..., Nx(N-1), NxN)



FSF has played this game for a long time, and he finally gets all the coins in the game.

Unfortunately ,he uses an UNSIGNED 32-BIT INTEGER variable to count the number of coins.

This variable may overflow.

We want to know what the variable will be.

(In other words, the number of coins mod 2^32)
 
Input
There are multiply test cases.



The first line contains an integer T(T<=500000), the number of test cases



Each of the next T lines contain an integer N(N<=500000).
 
Output
Output a single line for each test case.



For each test case, you should output "Case #C: ". first, where C indicates the case number and counts from 1.



Then output the answer, the value of that UNSIGNED 32-BIT INTEGER variable.
 
Sample Input
3
1
3
100
 
Sample Output
Case #1: 1
Case #2: 30
Case #3: 15662489
Hint
In the second test case, there are six levels(1x1,1x2,1x3,2x2,2x3,3x3)
Here is the details for this game:
1x1: 1(K=1); 1x2: 2(K=1); 1x3: 3(K=1); 2x2: 2(K=1), 4(K=2); 2x3: 6(K=1); 3x3: 3(K=1), 9(K=3);
1+2+3+2+4+6+3+9=30

题意:给你个n,让你求在n的范围内。是否能将一个矩形分成若干个同样大小为k的正方形,相应有val值,让你统计在n内的全部可能的分数总值

思路:首先我们来试着求解∑i=1nn∗igcd(nk,ik),那么我们能够确定的是假设能够把n∗m的矩形分成大小为k的正方形的话,那么k一定是gcd(n,
i)的因子。那么对于一项来说由于公式能够变形

n∗i∗kgcd(n,i)
-> n∗(ic1+ic2+...)
{k枚举全部的可能},那么cj是n的因子,那么icj就是因子相应的系数,我们再从全部的i来讲。对于因子我们能够计算出全部可能的数,比方因子cj,我们能够得到cj,
2∗cj,
3∗cj,
4∗cj....n,那么相应的系数就是我们须要的icj,累加起来计算是:

num[cj]=(1+2+...+ncj)=(1+ncj)∗(ncj)2

val[n]=∑i=1nnum[i]

ans[n]=ans[n−1]+val[n]

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll __int64
using namespace std;
const int maxn = 500005;
const ll mod = 1ll<<32; ll num[maxn], dp[maxn]; void cal() {
for (ll i = 1; i < maxn; i++)
for (ll j = i; j < maxn; j += i)
num[j] += (j/i+1) * (j/i) / 2;
} void init() {
memset(num, 0, sizeof(num));
cal();
dp[1] = 1;
for (ll i = 2; i < maxn; i++) {
dp[i] = dp[i-1] + num[i]*i;
dp[i] = dp[i] % mod;
}
} int main() {
init();
int t, n, cas = 1;
scanf("%d", &t);
while (t--) {
scanf("%d", &n);
printf("Case #%d: %I64d\n", cas++, dp[n]);
}
return 0;
}

HDU - 4944 FSF’s game的更多相关文章

  1. hdu 4944 FSF’s game(数论)

    题目链接:hdu 4944 FSF's game 题目大意:给定N,能够用不大于N的长a和宽b.组成N∗(N−1)2种不同的矩形,对于每一个矩形a∗b要计算它的值,K为矩形a,b能够拆分成若干个K∗K ...

  2. HDU 4944 FSF’s game 一道好题

    FSF’s game Time Limit: 9000/4500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tota ...

  3. HDU 4944 FSF’s game(2014 Multi-University Training Contest 7)

    思路:  ans[n]=  ans[n-1] + { (n,1),(n,2).....(n,n)}  现在任务 是 计算  { (n,1),(n,2).....(n,n)}(k=n的任意因子) 很明显 ...

  4. HDU 4944 逆序数对

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4911 题意: 给出一个序列,可以相邻的交换k次,求 k 次之后,逆序数对最少是多少: 分析: 可以发现 ...

  5. HDU 4944

    FSF’s game Problem Description FSF has programmed a game.In this game, players need to divide a rect ...

  6. HDOJ 4944 FSF’s game

    http://blog.csdn.net/keshuai19940722/article/details/38519681 不明真相的补一发... FSF's game Time Limit: 900 ...

  7. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

随机推荐

  1. windows无效字符名导致的错误及解决办法

    今天用file_put_content($fileName,$data)产生错误:内容如下: Warning: file_put_contents(images/7d5636992a7395f9174 ...

  2. [置顶] Android源码分析-点击事件派发机制

    转载请注明出处:http://blog.csdn.net/singwhatiwanna/article/details/17339857 概述 一直想写篇关于Android事件派发机制的文章,却一直没 ...

  3. 在CentOS下源码安装 Xen并搭建Windows虚拟机

    前言 首先要感谢xing的帮助,在他的指导之下才完成环境的搭建,本文档的部分内容来自他的文档.另外,还要感谢——互联网. 1.       环境介绍 Linux: CentOS 6.3 Xen: Xe ...

  4. Ext的异步请求(二级级联动态加载下拉列表)

    页面: <tr> <td class="label" width="300" >作业计划项模板</td> <td> ...

  5. oralce 简单错误汇集。。。。。

    1.ora-12560 TNS:协议适配器错误 实例名被错误修改或者oracle 服务没有正常启动.

  6. HTML5小游戏《智力大拼图》发布,挑战你的思维风暴

    一,前言   本 游戏 是鄙人研究lufylegend数日之后,闲暇之余写下的.本游戏运用全新的技术 html 5写成的.游戏引擎为国产的lufylegend.js,大家可以去它的官网看看.游戏处于测 ...

  7. WCF技术剖析之七:如何实现WCF与EnterLib PIAB、Unity之间的集成

    原文:WCF技术剖析之七:如何实现WCF与EnterLib PIAB.Unity之间的集成 在这之前,我写过深入介绍MS EnterLib PIAB的文章(参阅<MS Enterprise Li ...

  8. Docker学习笔记(1) — docker 常用命令

    1. docker version显示 Docker 版本信息.2. docker info显示 Docker 系统信息,包括镜像和容器数.3. docker searchdocker search ...

  9. InPageError c000009c使用chkdsk修复磁盘

    chkdsk e: /f /r 回车运行就表示修复e盘上的错误,并找到坏扇区恢复可读取的信息. 其它: [Path} FileName] 指定需要 chkdsk 检查碎片整理的文件或文件集的位置和名称 ...

  10. 基于visual Studio2013解决面试题之1002公共子串

     题目