Python学习笔记——基础篇【第五周】——算法(4*4的2维数组和冒泡排序)、时间复杂度
目录
1、算法基础
2、冒泡排序
3、时间复杂度
(1)时间频度
(2)时间复杂度
4、指数时间
5、常数时间
6、对数时间
7、线性时间
1、算法基础
#!_*_coding:utf-8_*_ array=[[col for col in range(5)] for row in range(5)] #初始化一个4*4数组
#array=[[col for col in 'abcde'] for row in range(5)] for row in array: #旋转前先看看数组长啥样
print(row) print('-------------')
for i,row in enumerate(array): for index in range(i,len(row)):
tmp = array[index][i] #get each rows' data by column's index
array[index][i] = array[i][index] #
print tmp,array[i][index] #= tmp
array[i][index] = tmp
for r in array:print r print('--one big loop --')
2、冒泡排序
将一个不规则的数组按从小到大的顺序进行排序
data = [10,4,33,21,54,3,8,11,5,22,2,1,17,13,6]
print("before sort:",data)
previous = data[0]
for j in range(len(data)):
tmp = 0
for i in range(len(data)-1):
if data[i] > data[i+1]:
tmp=data[i]
data[i] = data[i+1]
data[i+1] = tmp
print(data)
print("after sort:",data)
代码优化(提升性能)
count=0
data = [10,4,33,21,1,54,3,8,11,5,22,2,1,17,13,6]
#for index,i in enumerate(data[0:-1]):
print(len(data))
for j in range(1,len(data)):
for i in range(len(data)-j): #J= 0 1 2 3 4 5 6 提升地方
if data[i]>data[i+1]:
tmp=data[i+1]
data[i+1]=data[i] #把10赋值给4
data[i]=tmp #把4赋值给10
count+=1
print(data)
print("count",count)
冒泡排序
(1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测
试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法
中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
5、常数时间
若对于一个算法,
的上界与输入大小无关,则称其具有常数时间,记作
时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称
时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。
6、对数时间
若算法的T(n) = O(log n),则称其具有对数时间
对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。
递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。
7、线性时间
如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。
详细见Alex金角大王的文档
http://www.cnblogs.com/alex3714/articles/5143440.html
Python学习笔记——基础篇【第五周】——算法(4*4的2维数组和冒泡排序)、时间复杂度的更多相关文章
- Python学习笔记——基础篇【第一周】——变量与赋值、用户交互、条件判断、循环控制、数据类型、文本操作
目录 Python第一周笔记 1.学习Python目的 2.Python简史介绍 3.Python3特性 4.Hello World程序 5.变量与赋值 6.用户交互 7.条件判断与缩进 8.循环控制 ...
- Python学习笔记——基础篇【第二周】——解释器、字符串、列表、字典、主文件判断、对象
目录 1.Python介绍 2.Python编码 3.接受执行传参 4.基本数据类型常用方法 5.Python主文件判断 6.一切事物都是对象 7. int内部功能介绍 8.float和long内 ...
- Python学习笔记基础篇——总览
Python初识与简介[开篇] Python学习笔记——基础篇[第一周]——变量与赋值.用户交互.条件判断.循环控制.数据类型.文本操作 Python学习笔记——基础篇[第二周]——解释器.字符串.列 ...
- Python学习笔记——基础篇【第七周】———类的静态方法 类方法及属性
新式类和经典类的区别 python2.7 新式类——广度优先 经典类——深度优先 python3.0 新式类——广度优先 经典类——广度优先 广度优先才是正常的思维,所以python 3.0中已经修复 ...
- Python学习笔记——基础篇【第四周】——迭代器&生成器、装饰器、递归、算法、正则表达式
目录 1.迭代器&生成器 2.装饰器 a.基本装饰器 b.多参数装饰器 3.递归 4.算法基础:二分查找.二维数组转换 5.正则表达式 6.常用模块学习 #作业:计算器开发 a.实现加减成熟及 ...
- Python 学习笔记---基础篇
1. 简单测试局域网中的电脑是否连通.这些电脑的ip范围从192.168.0.101到192.168.0.200 import subprocess cmd="cmd.exe" b ...
- Python学习笔记——基础篇【第五周】——正在表达式(re.match与re.search的区别)
目录 1.正在表达式 2.正则表达式常用5种操作 3.正则表达式实例 4.re.match与re.search的区别 5.json 和 pickle 1.正则表达式 语法: import re # ...
- Python学习笔记——基础篇【第五周】——模块
模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...
- Python学习笔记——基础篇【第五周】——正则表达式(re)
目录 1.简介 2.字符匹配 1.简介:就其本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现.正则表达式模式被编译 ...
随机推荐
- [转]Jailbreak Detection Methods
Source: http://blog.spiderlabs.com/2014/10/jailbreak-detection-methods.html Many iOS applications co ...
- Jenkins中关于一些插件的使用
Jenkins中关于一些插件的使用方法 最近在为公司搭建CI平台过程中,以及在具体项目实施过程中使用过的一些插件的具体用法: 1. ant插件 这个插件可能是我们最为经常使用的,若构建脚本是使用bui ...
- ASP.NET4.5Web API及非同步程序开发系列3
ASP.NET4.5Web API及非同步程序开发系列(3) 接着上一篇博客的内容做一个补充,正好是一个大哥提出来的,我们看看一个有趣的现象. 请求相关问题的补充: 我们先在Controller中的定 ...
- sql server常有的问题-实时错误'91' 对象变量或with块变量未设置
这样的问题,对于我们这样的初学者来说,无疑是一个接触sql server后第一个艰难的问题,“实时错误'91' 对象变量或with块变量未设置”这句话到底透露出什么信息?直至写此博文,我依然看不出什么 ...
- Java Concurrency (1)
Memory that can be shared betweenthreads is called shared memory or heap memory. The term variable a ...
- Xcode4.6 开发 metaio 增强现实 项目(二)--增强现实的实现
经过昨天的一些步骤,我们已经将我们的IOS应用的基本界面搭建好,下面我们将开始新的征程:增强现实技术的实现: 进入webView后,我们要选用我们这次需要用的nib文件,它是一个家居摆放应用的界面文件 ...
- OOAD(面向对象分析和设计)GRASP之创建者模式(Creator)又称生成器模式学习笔记
说OOAD是一门玄学,一点都不为过.又或许是因为我之前一直没有很好的建立面向对象的思想,更有可能是因为练得不够多...总之,一直没能很好理解,哪怕把一本叫做<UML和模式应用>的书翻来覆去 ...
- IK分词器 IKAnalyzer 简单demo
所用IKAnalyzer:IK-Analyzer-2012FF 百度云:http://pan.baidu.com/s/1bne9UKf 实例代码: package com.test.ik.anal ...
- Epicor系统二次开发
Epicor系统二次开发 一.获取或修改界面EpiDataView的字段数据(Get EpiDataView data) C# EpiDataView edv = (EpiDataView)oTran ...
- 典型关联分析(CCA)原理总结
典型关联分析(Canonical Correlation Analysis,以下简称CCA)是最常用的挖掘数据关联关系的算法之一.比如我们拿到两组数据,第一组是人身高和体重的数据,第二组是对应的跑步能 ...
而呈