HDU 5868 Different Circle Permutation(burnside 引理)
HDU 5868 Different Circle Permutation(burnside 引理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5868
Description
You may not know this but it's a fact that Xinghai Square is Asia's largest city square. It is located in Dalian and, of course, a landmark of the city. It's an ideal place for outing any time of the year. And now:
There are N children from a nearby primary school flying kites with a teacher. When they have a rest at noon, part of them (maybe none) sit around the circle flower beds. The angle between any two of them relative to the center of the circle is always a multiple of 2π/N but always not 2π/N.
Now, the teacher raises a question: How many different ways there are to arrange students sitting around the flower beds according to the rule stated above. To simplify the problem, every student is seen as the same. And to make the answer looks not so great, the teacher adds another specification: two ways are considered the same if they coincide after rotating.
Input
There are T tests (T≤50). Each test contains one integer N. 1≤N≤1000000000 (10^9). Process till the end of input.
Output
For each test, output the answer mod 1000000007 (10^9+7) in one line.
Sample Input
4
7
10
Sample Output
3
5
15
题意:
有n个人假设完全一样,其中有一部分人坐成一个圆,这些人中任意两个人之间的距离是2π/N的倍数,但是不是2π/N。如果有两种坐法,一种通过旋转可以变成另外一种坐法,我们就可以认为这是一种坐法,问总共有多少种坐法?
题解:
题解参照https://async.icpc-camp.org/d/546-2016 先膜一发菊苣。
首先是不考虑旋转同构的情况下,我们自己手动推几个就可以得到一个公式就是f(n)=f(n-1)+f(n-2)。这里我们注意一点,就是当n=1的时候我们当其为1 。(具体原因我也不清楚)。
然后就是我们使用 burnside 引理(对于一个置换f,若一个着色方案s经过置换后不变,称s为f的不动点。将f的不动点数目记为C(f),则可以证明等价类数目为所有C(f)的平均值。此结论称为 burnside 引理————来自训练指南)。
下面则是求不动点数目。对于这个我们则是依次计算旋转1,2,……n的不动点数目。前面我们定义了f(n)为不考虑旋转同构的状态。下面就是将循环数代入即可,其中循环节的个数为gcd(i,n)。
当然直枚举每个点必然会超时。我们可以使用 (∑f(d)*φ(n/d))/n 代替。其中d是n的因子。
代码:
#include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9+7 ;
struct matrix {
long long x1,x2 ;
long long x3,x4 ;
};
matrix mul(matrix a,matrix b){
matrix ans ;
ans.x1 = (a.x1*b.x1 + a.x2*b.x3)%mod ;
ans.x2 = (a.x1*b.x2 + a.x2*b.x4)%mod ;
ans.x3 = (a.x3*b.x1 + a.x4*b.x3)%mod ;
ans.x4 = (a.x3*b.x2 + a.x4*b.x4)%mod ;
return ans ;
}
long long quick_matrix(long long x){
x -= 4 ;
matrix ans,cal ;
ans.x1 = ans.x2 = ans.x3 = 1 ; ans.x4 = 0 ;
cal.x1 = cal.x2 = cal.x3 = 1 ; cal.x4 = 0 ;
while (x){
if (x%2)
ans = mul(ans,cal) ;
cal = mul(cal,cal) ;
x >>= 1 ;
}
return (ans.x1*4+ans.x2*3)%mod ;
}
long long fx(long long x){
if (x == 1)
return 1;
else if (x == 2)
return 3;
else if (x == 3)
return 4;
else return quick_matrix(x) ;
}
long long quick(long long a,long long n){
long long ans = 1 ;
long long cal = a ;
while (n){
if (n%2)
ans = (ans*cal)%mod ;
cal = (cal*cal)%mod;
n >>= 1;
}
return ans ;
}
long long euler(long long n)
{
long long ans = n;
long long i;
for (i = 2; i*i <= n; i++){
if (n%i == 0){
while (n%i == 0)
n /= i;
ans = ans/i*(i-1) ;
}
}
if (n != 1)
ans = ans/n*(n-1);
return ans;
}
long long solve(long long n){
if (n == 1)
return 2;
long long ans = 0;
long long nn = n ;
long long d;
long long i;
for (i = 1; i*i < n; i++){
if (n%i == 0){
ans = (ans + fx(i)*euler(nn/i) + fx(nn/i)*euler(i))%mod ;
}
}
if (i*i == n)
ans = (ans + fx(i)*euler(i))%mod ;
return (ans*quick(nn,mod-2))%mod;
}
int main()
{
long long n;
while (~scanf("%lld",&n))
printf("%lld\n",solve(n)) ;
return 0 ;
}
HDU 5868 Different Circle Permutation(burnside 引理)的更多相关文章
- HDU 5868 Different Circle Permutation Burnside引理+矩阵快速幂+逆元
题意:有N个座位,人可以选座位,但选的座位不能相邻,且旋转不同构的坐法有几种.如4个座位有3种做法.\( 1≤N≤1000000000 (10^9) \). 题解:首先考虑座位不相邻的选法问题,如果不 ...
- 解题:HDU 5868 Different Circle Permutation
题面 先往上套Burnside引理 既然要求没有$\frac{2*π}{n}$的角,也就是说两个人不能挨着,那么相当于给一个环黑白染色,两个相邻的点不能染白色,同时求方案数.考虑$n$个置换子群,即向 ...
- hdu 5868:Different Circle Permutation 【Polya计数】
似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋 ...
- HDU 5868 Different Circle Permutation
公式,矩阵快速幂,欧拉函数,乘法逆元. $an{s_n} = \frac{1}{n}\sum\limits_{d|n} {\left[ {phi(\frac{n}{d})×\left( {fib(d ...
- hdu 5868 2016 ACM/ICPC Asia Regional Dalian Online 1001 (burnside引理 polya定理)
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K ...
- hdu 5868 Polya计数
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K ...
- 【等价的穿越】Burnside引理&Pólya计数法
Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上 ...
- [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...
- POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 3731 Accepted: 1227 D ...
随机推荐
- Mac下quick-cocos2d-x player 无法运行解决方案
今天打算在Mac开发我的游戏,因为游戏用的2.2.5版的player,没有安装版.在Mac上运行player时提示player文件已经损坏. 解决方法:在shell下执行如下指令即可 mv $QUIC ...
- 关于ActiveMQ的一点总结
ActiveMQ入门 作者:一路向北 摘要:本文主要讲述ActiveMQ的基本知识和使用方法,并简单结合spring使用ActiveMQ. 一.ActiveMQ特性和使用总览 企业消息软件从80年代起 ...
- 让C#、VB.NET实现复杂的二进制操作
VB.NET和C#属于高级语言,对二进制位操作的支持不是很好,比如没有了移位运算等,用的时候确实很不方便,所以在闲暇之余我重新封装了一个用于C#.VB.NET的位操作类库,通过该类库可以实现数据移位. ...
- hdu 2828 Buy Tickets(线段树)
一道不算复杂的线段树,就是数据处理需要好好想一下. 将输入的所有数据从后往前输入,对于最后一个值,如果它想插入第i个位置,那么他就必须在前面留下i-1个位置.对于倒数第二个人,如果他想插入j位置,那么 ...
- 直插式精巧I/O模块:WIZ812MJ数据手册V1.1
1. 简介 WIZ812MJ是一款内嵌了W5100(硬件TCP/IP芯片,内置PHY).带其他胶合逻辑的MAG-JACK(带变压器的RJ45)网络模块.它可以当作一个组件使用,而且不需要为W5100和 ...
- Future 和 ExecutorCompletionService 对比和使用
当我们通过Executor提交一组并发执行的任务,并且希望在每一个任务完成后能立即得到结果,有两种方式可以采取: 方式一: 通过一个list来保存一组future,然后在循环中轮训这组future,直 ...
- Python print报ascii编码异常的靠谱解决办法
之前遇到此异常UnicodeEncodeError: 'ascii' codec can't encode characters...,都是用这种方式解决:sys.setdefaultencoding ...
- kafka删除topic的方法及我在kafka上边的一些经验
我在本地做kafka的producer调试,每隔一段时间后,所使用的topic管道就会堆积数据,而且我这边使用的是 kafka bin 下的consumer命令单独消费的,每次都是 --fro ...
- Javascript中 a.href 和 a.getAttribute('href') 结果不完全一致
今天无意中发现这个么问题,页面上对所有A标签的href属性为空的自动添加一个链接地址,结果发现if判断条件始终都没生效,莫名其妙. 原来Javascript中 a.href 和 a.getAttrib ...
- oracle数据库连接串格式
oracle常用链接串格式:jdbc:oracle:thin:@//<host>:<port>/<service_name> jdbc:oracle:thin:@& ...
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5868
Description
You may not know this but it's a fact that Xinghai Square is Asia's largest city square. It is located in Dalian and, of course, a landmark of the city. It's an ideal place for outing any time of the year. And now:
There are N children from a nearby primary school flying kites with a teacher. When they have a rest at noon, part of them (maybe none) sit around the circle flower beds. The angle between any two of them relative to the center of the circle is always a multiple of 2π/N but always not 2π/N.
Now, the teacher raises a question: How many different ways there are to arrange students sitting around the flower beds according to the rule stated above. To simplify the problem, every student is seen as the same. And to make the answer looks not so great, the teacher adds another specification: two ways are considered the same if they coincide after rotating.
Input
There are T tests (T≤50). Each test contains one integer N. 1≤N≤1000000000 (10^9). Process till the end of input.
Output
For each test, output the answer mod 1000000007 (10^9+7) in one line.
Sample Input
4
7
10
Sample Output
3
5
15
题意:
有n个人假设完全一样,其中有一部分人坐成一个圆,这些人中任意两个人之间的距离是2π/N的倍数,但是不是2π/N。如果有两种坐法,一种通过旋转可以变成另外一种坐法,我们就可以认为这是一种坐法,问总共有多少种坐法?
题解:
题解参照https://async.icpc-camp.org/d/546-2016 先膜一发菊苣。
首先是不考虑旋转同构的情况下,我们自己手动推几个就可以得到一个公式就是f(n)=f(n-1)+f(n-2)。这里我们注意一点,就是当n=1的时候我们当其为1 。(具体原因我也不清楚)。
然后就是我们使用 burnside 引理(对于一个置换f,若一个着色方案s经过置换后不变,称s为f的不动点。将f的不动点数目记为C(f),则可以证明等价类数目为所有C(f)的平均值。此结论称为 burnside 引理————来自训练指南)。
下面则是求不动点数目。对于这个我们则是依次计算旋转1,2,……n的不动点数目。前面我们定义了f(n)为不考虑旋转同构的状态。下面就是将循环数代入即可,其中循环节的个数为gcd(i,n)。
当然直枚举每个点必然会超时。我们可以使用 (∑f(d)*φ(n/d))/n 代替。其中d是n的因子。
代码:
#include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9+7 ;
struct matrix {
long long x1,x2 ;
long long x3,x4 ;
};
matrix mul(matrix a,matrix b){
matrix ans ;
ans.x1 = (a.x1*b.x1 + a.x2*b.x3)%mod ;
ans.x2 = (a.x1*b.x2 + a.x2*b.x4)%mod ;
ans.x3 = (a.x3*b.x1 + a.x4*b.x3)%mod ;
ans.x4 = (a.x3*b.x2 + a.x4*b.x4)%mod ;
return ans ;
}
long long quick_matrix(long long x){
x -= 4 ;
matrix ans,cal ;
ans.x1 = ans.x2 = ans.x3 = 1 ; ans.x4 = 0 ;
cal.x1 = cal.x2 = cal.x3 = 1 ; cal.x4 = 0 ;
while (x){
if (x%2)
ans = mul(ans,cal) ;
cal = mul(cal,cal) ;
x >>= 1 ;
}
return (ans.x1*4+ans.x2*3)%mod ;
}
long long fx(long long x){
if (x == 1)
return 1;
else if (x == 2)
return 3;
else if (x == 3)
return 4;
else return quick_matrix(x) ;
}
long long quick(long long a,long long n){
long long ans = 1 ;
long long cal = a ;
while (n){
if (n%2)
ans = (ans*cal)%mod ;
cal = (cal*cal)%mod;
n >>= 1;
}
return ans ;
}
long long euler(long long n)
{
long long ans = n;
long long i;
for (i = 2; i*i <= n; i++){
if (n%i == 0){
while (n%i == 0)
n /= i;
ans = ans/i*(i-1) ;
}
}
if (n != 1)
ans = ans/n*(n-1);
return ans;
}
long long solve(long long n){
if (n == 1)
return 2;
long long ans = 0;
long long nn = n ;
long long d;
long long i;
for (i = 1; i*i < n; i++){
if (n%i == 0){
ans = (ans + fx(i)*euler(nn/i) + fx(nn/i)*euler(i))%mod ;
}
}
if (i*i == n)
ans = (ans + fx(i)*euler(i))%mod ;
return (ans*quick(nn,mod-2))%mod;
}
int main()
{
long long n;
while (~scanf("%lld",&n))
printf("%lld\n",solve(n)) ;
return 0 ;
}
题意:有N个座位,人可以选座位,但选的座位不能相邻,且旋转不同构的坐法有几种.如4个座位有3种做法.\( 1≤N≤1000000000 (10^9) \). 题解:首先考虑座位不相邻的选法问题,如果不 ...
题面 先往上套Burnside引理 既然要求没有$\frac{2*π}{n}$的角,也就是说两个人不能挨着,那么相当于给一个环黑白染色,两个相邻的点不能染白色,同时求方案数.考虑$n$个置换子群,即向 ...
似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋 ...
公式,矩阵快速幂,欧拉函数,乘法逆元. $an{s_n} = \frac{1}{n}\sum\limits_{d|n} {\left[ {phi(\frac{n}{d})×\left( {fib(d ...
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K ...
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K ...
Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上 ...
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 3731 Accepted: 1227 D ...
今天打算在Mac开发我的游戏,因为游戏用的2.2.5版的player,没有安装版.在Mac上运行player时提示player文件已经损坏. 解决方法:在shell下执行如下指令即可 mv $QUIC ...
ActiveMQ入门 作者:一路向北 摘要:本文主要讲述ActiveMQ的基本知识和使用方法,并简单结合spring使用ActiveMQ. 一.ActiveMQ特性和使用总览 企业消息软件从80年代起 ...
VB.NET和C#属于高级语言,对二进制位操作的支持不是很好,比如没有了移位运算等,用的时候确实很不方便,所以在闲暇之余我重新封装了一个用于C#.VB.NET的位操作类库,通过该类库可以实现数据移位. ...
一道不算复杂的线段树,就是数据处理需要好好想一下. 将输入的所有数据从后往前输入,对于最后一个值,如果它想插入第i个位置,那么他就必须在前面留下i-1个位置.对于倒数第二个人,如果他想插入j位置,那么 ...
1. 简介 WIZ812MJ是一款内嵌了W5100(硬件TCP/IP芯片,内置PHY).带其他胶合逻辑的MAG-JACK(带变压器的RJ45)网络模块.它可以当作一个组件使用,而且不需要为W5100和 ...
当我们通过Executor提交一组并发执行的任务,并且希望在每一个任务完成后能立即得到结果,有两种方式可以采取: 方式一: 通过一个list来保存一组future,然后在循环中轮训这组future,直 ...
之前遇到此异常UnicodeEncodeError: 'ascii' codec can't encode characters...,都是用这种方式解决:sys.setdefaultencoding ...
我在本地做kafka的producer调试,每隔一段时间后,所使用的topic管道就会堆积数据,而且我这边使用的是 kafka bin 下的consumer命令单独消费的,每次都是 --fro ...
今天无意中发现这个么问题,页面上对所有A标签的href属性为空的自动添加一个链接地址,结果发现if判断条件始终都没生效,莫名其妙. 原来Javascript中 a.href 和 a.getAttrib ...
oracle常用链接串格式:jdbc:oracle:thin:@//<host>:<port>/<service_name> jdbc:oracle:thin:@& ...