模非素数下的排列组合,简直凶残

调着调着就过了= =

都不知道怎么过的= =

直接上链接http://hi.baidu.com/aekdycoin/blog/item/147620832b567eb40df4d258.html

CODE:

#include<cstdio>

#include<iostream>

#include<cstring>

#include<algorithm>

#include<cmath>

using namespace std;

typedef long long ll;

ll a[3][50],pri[50],M[50],t[50];

ll ex_gcd(ll a,ll b,ll &x,ll &y) {

if (b==0)  {x=1,y=0 ;return a;}

ex_gcd(b,a%b,x,y);

x=x-a/b*y;

swap(x,y);

return 0;

}

ll p;

int l,sum[50];

int fen(int p){

for (int i=2;i<=sqrt(p);i++) {

if (p%i==0) {

pri[++l]=i;

while (p%i==0) {

sum[l]++;

p/=i;

}

}

}

if (p>1) {pri[++l]=p;sum[l]=1;}

return 0;

}

ll power(ll x,ll y,ll mod){

if (y==0) return 1;

ll ans=power(x,y>>1,mod);

ans=ans*ans%mod;

if (y&1) ans=ans*x%mod;

return ans;

}

ll f[100101],cnt;

ll calcfac(ll n,ll p,ll pi){

if (n<pi) return f[n];

// printf("%lld %lld",pi,pri[1]);

ll seg=n/p,rem=n%p;

ll ret=power(f[p-1],seg,p);

ret=ret*f[rem]%p;

cnt+=n/pi;

ret=ret*calcfac(n/pi,p,pi)%p;

return ret;

}

ll china(ll *a,ll *b) {

ll tem,ans=0;

for (int i=2;i<=l;i++) {

ll x,y;

ex_gcd(b[i-1],b[i],x,y);

b[i]=b[i]*b[i-1];

a[i]=((x*(a[i]-a[i-1])*b[i-1]+a[i-1])%b[i]+b[i])%b[i];

}

return a[l];

}

ll b[51];

ll c(int n,int m){

for (int i=1;i<=l;i++) {

ll p=1;

for (int j=1;j<=sum[i];j++) p*=pri[i];

f[0]=1;

for (int j=1;j<p;j++) {

f[j]=f[j-1];

if (j%pri[i]==0) continue;

f[j]=(f[j]*j)%p;

}

cnt=0;ll ans,tem;

a[1][i]=calcfac(n,p,pri[i]);

tem=cnt;cnt=0;

a[2][i]=calcfac(m,p,pri[i]);

printf("%lld\n",pri[1]);

a[3][i]=calcfac(n-m,p,pri[i]);

cnt=tem-cnt;

a[2][i]=a[3][i]*a[2][i]%p;

ex_gcd(a[2][i],p,ans,tem);

ans=(ans%p+p)%p;

a[1][i]=a[1][i]*ans%p*power(pri[i],cnt,p)%p;

b[i]=p;

}

return (china(a[1],b));

}

ll te[8];

int main(){

ll n,m;

ll tmp=0;

scanf("%lld %lld %lld",&p,&n,&m);

for (int i=1;i<=m;i++) {

scanf("%lld",&te[i]);

tmp+=te[i];

}

if (tmp>n) {printf("Impossible");return 0;}

fen(p);

for (int i=1;i<=l;i++) printf("%lld %lld\n",pri[i],sum[i]);

ll ans=1;

for (int i=1;i<=m;i++) {

ans=ans*c(n,te[i])%p;

n-=te[i];

// if (ans==0) {printf("%d\n",0);return 0;}

printf("\n\n");

}

printf("%lld",ans);

return 0;

}

BZOJ 2142: 礼物的更多相关文章

  1. BZOJ 2142: 礼物 [Lucas定理]

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1294  Solved: 534[Submit][Status][Discuss] ...

  2. BZOJ 2142 礼物 组合数学 CRT 中国剩余定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] ...

  3. 【刷题】BZOJ 2142 礼物

    Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店 ...

  4. bzoj 2142 礼物——扩展lucas模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...

  5. bzoj 2142: 礼物【中国剩余定理+组合数学】

    参考:http://blog.csdn.net/wzq_qwq/article/details/46709471 首先推组合数,设sum为每个人礼物数的和,那么答案为 \[ ( C_{n}^{sum} ...

  6. BZOJ.2142.礼物(扩展Lucas)

    题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...

  7. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

  8. BZOJ 2142 礼物 数论

    这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. ...

  9. bzoj 3055礼物运送 floyed + 状压DP

    bzoj 3055: 礼物运送 floyed first 设f[i][S]表示取到了S集合中的所有点(不一定是经过的所有点),最后停在了i的最优值. 初始就f[i][{i}] = dis[1][i] ...

随机推荐

  1. leetcode day5

    [242]Valid Anagram: Given two strings s and t, write a function to determine if t is an anagram of s ...

  2. linux 安装jdk及tomcat指定jdk版本推荐

    方法1:用yum命令安装 1.   查看当前jdk版本:Java –version,或者是:rpm -qa | grep jdk 2.   删除当前jdk:yum -y remove java-1.6 ...

  3. 如何使用Grunt(好文)

    Grunt 是什么? Grunt 基于Node.js之上,是一个以任务处理为基础的命令行工具,可以减少优化开发版本为发布版本所需的人力和时间,从而加速开发流程.它的工作原理是把这 些工作整合为不同的任 ...

  4. DEV控件的Gridview1

    DEV控件的Gridview小技巧总结 1.设置Gridview控件的某列不可编辑 this.gridData.gridView1.Columns["change_date"].O ...

  5. 1.3.2. App Icon 和 Launch Image(Core Data 应用程序实践指南)

    App Icon: 选中 Assets.xcassets 选择 AppIcon ,并拖入图片(29.40.60) Launch Image: 创建 Launch Image 拖入图片(2x.R4)

  6. 《疯狂Java讲义》(七)---- 方法

    一 方法的参数传递机制 Java方法的参数传递方式只有一种:值传递.就是将实际参数值的副本传入方法内,而参数本身不会受到任何影响. eg. 基本类型的值传递 public class Primitiv ...

  7. HDU -2100-Lovekey

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2100 这题开始一直想着先把26进制转换成10进制,在转换成26进制,又200个字符因而行不通, 直接卡 ...

  8. DNS没有生效的几个原因

    1.记录没有正确添加 请确认你的域名记录是否完全正确的添加.线路类型正确,记录类型正确 2.域名还没有生效 这个情况还会有另外一个现象,就是域名有时候可以ping,有时候不能ping. 这是因为你当地 ...

  9. ExtJS与后台Java交互

    参考博客:http://blog.csdn.net/wanghuan203/article/details/8125970 开发环境:Eclipse + Tomcat + ExtJS6.0 工程目录结 ...

  10. puppet来管理文件和软件包

    puppet来管理文件和软件包 1 exec的使用,可以运行shell命令 为配置文件添加配置,指示写了关键部分,其他配置省略没写 代码示例如下: [root@pup manifests]# cat ...