OpenCV-Python教程(9、使用霍夫变换检测直线)
相比C++而言,Python适合做原型。本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处。这篇文章介绍在Python中使用OpenCV的霍夫变换检测直线。
提示:
- 转载请详细注明原作者及出处,谢谢!
- 本文介绍在OpenCV-Python中使用霍夫变换检测直线的方法。
- 本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识。笔者推荐清华大学出版社的《图像处理与计算机视觉算法及应用(第2版) 》。
霍夫变换
Hough变换是经典的检测直线的算法。其最初用来检测图像中的直线,同时也可以将其扩展,以用来检测图像中简单的结构。
OpenCV提供了两种用于直线检测的Hough变换形式。其中基本的版本是cv2.HoughLines。其输入一幅含有点集的二值图(由非0像素表示),其中一些点互相联系组成直线。通常这是通过如Canny算子获得的一幅边缘图像。cv2.HoughLines函数输出的是[float, float]形式的ndarray,其中每个值表示检测到的线(ρ , θ)中浮点点值的参数。下面的例子首先使用Canny算子获得图像边缘,然后使用Hough变换检测直线。其中HoughLines函数的参数3和4对应直线搜索的步长。在本例中,函数将通过步长为1的半径和步长为π/180的角来搜索所有可能的直线。最后一个参数是经过某一点曲线的数量的阈值,超过这个阈值,就表示这个交点所代表的参数对(rho, theta)在原图像中为一条直线。具体理论可参考这篇文章。
#coding=utf-8
import cv2
import numpy as np img = cv2.imread("/home/sunny/workspace/images/road.jpg", 0) img = cv2.GaussianBlur(img,(3,3),0)
edges = cv2.Canny(img, 50, 150, apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,118) #这里对最后一个参数使用了经验型的值
result = img.copy()
for line in lines[0]:
rho = line[0] #第一个元素是距离rho
theta= line[1] #第二个元素是角度theta
print rho
print theta
if (theta < (np.pi/4. )) or (theta > (3.*np.pi/4.0)): #垂直直线
#该直线与第一行的交点
pt1 = (int(rho/np.cos(theta)),0)
#该直线与最后一行的焦点
pt2 = (int((rho-result.shape[0]*np.sin(theta))/np.cos(theta)),result.shape[0])
#绘制一条白线
cv2.line( result, pt1, pt2, (255))
else: #水平直线
# 该直线与第一列的交点
pt1 = (0,int(rho/np.sin(theta)))
#该直线与最后一列的交点
pt2 = (result.shape[1], int((rho-result.shape[1]*np.cos(theta))/np.sin(theta)))
#绘制一条直线
cv2.line(result, pt1, pt2, (255), 1) cv2.imshow('Canny', edges )
cv2.imshow('Result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果如下:
注意:
在C++中,HoughLines函数得到的结果是一个向量lines,其中的元素是由两个元素组成的子向量(rho, theta),所以lines的访问方式类似二维数组。因此,可以以类似:
std::vector<cv::Vec2f>::const_iterator it= lines.begin();
float rho= (*it)[0];
float theta= (*it)[1];
这样的方式访问rho和theta。
而在Python中,返回的是一个三维的np.ndarray!。可通过检验HoughLines返回的lines的ndim属性得到。如:
lines = cv2.HoughLines(edges,1,np.pi/180,118)
print lines.ndim
#将得到3
至于为什么是三维的,这和NumPy中ndarray的属性有关(关于NumPy的相关内容,请移步至 NumPy简明教程),如果将HoughLines检测到的的结果输出,就一目了然了:
#上面例子中检测到的lines的数据 3 #lines.ndim属性
(1, 5, 2) #lines.shape属性 #lines[0]
[[ 4.20000000e+01 2.14675498e+00]
[ 4.50000000e+01 2.14675498e+00]
[ 3.50000000e+01 2.16420817e+00]
[ 1.49000000e+02 1.60570288e+00]
[ 2.24000000e+02 1.74532920e-01]]
===============
#lines本身
[[[ 4.20000000e+01 2.14675498e+00]
[ 4.50000000e+01 2.14675498e+00]
[ 3.50000000e+01 2.16420817e+00]
[ 1.49000000e+02 1.60570288e+00]
[ 2.24000000e+02 1.74532920e-01]]]
概率霍夫变换
观察前面的例子得到的结果图片,其中Hough变换看起来就像在图像中查找对齐的边界像素点集合。但这样会在一些情况下导致虚假检测,如像素偶然对齐或多条直线穿过同样的对齐像素造成的多重检测。
要避免这样的问题,并检测图像中分段的直线(而不是贯穿整个图像的直线),就诞生了Hough变化的改进版,即概率Hough变换(Probabilistic Hough)。在OpenCV中用函数cv::HoughLinesP 实现。如下:
#coding=utf-8
import cv2
import numpy as np img = cv2.imread("/home/sunny/workspace/images/road.jpg") img = cv2.GaussianBlur(img,(3,3),0)
edges = cv2.Canny(img, 50, 150, apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,118)
result = img.copy() #经验参数
minLineLength = 200
maxLineGap = 15
lines = cv2.HoughLinesP(edges,1,np.pi/180,80,minLineLength,maxLineGap)
for x1,y1,x2,y2 in lines[0]:
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2) cv2.imshow('Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果如下:
未完待续。。。
参考资料:
1、《Opencv2 Computer Vision Application Programming Cookbook》
2、《OpenCV References Manule》
如果觉得本文写的还可以的话,请轻点“顶”,您的支持是我写下去的动力之一。未完待续。。。如有错误请指正,本人会虚心接受并改正!谢谢!
OpenCV-Python教程(9、使用霍夫变换检测直线)的更多相关文章
- c++ 霍夫变换检测直线
通常这是一幅边缘图像,比如来自 Canny算子.cv:: Houghlines函数的输出是cV::Vec2f向量,每个元素都是一对代表检测到的直线的浮点数(p,0).在下例中我们首先应用 Canny算 ...
- OpenCV Python教程(3、直方图的计算与显示)
转载请详细注明原作者及出处,谢谢! 本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了. ...
- OpenCV Python教程(1、图像的载入、显示和保存)
原文地址:http://blog.csdn.net/sunny2038/article/details/9057415 转载请详细注明原作者及出处,谢谢! 本文是OpenCV 2 Computer ...
- 【OpenCV入门教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑
http://blog.csdn.net/poem_qianmo/article/details/26977557 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...
- 【OpenCV新手教程第14】OpenCVHough变换:霍夫变换线,霍夫变换圆汇编
本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) ...
- cv2.cornerHarris()详解 python+OpenCV 中的 Harris 角点检测
参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014. ...
- 【OpenCV新手教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) ...
- OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...
- 一文带你学会使用YOLO及Opencv完成图像及视频流目标检测(上)|附源码
计算机视觉领域中,目标检测一直是工业应用上比较热门且成熟的应用领域,比如人脸识别.行人检测等,国内的旷视科技.商汤科技等公司在该领域占据行业领先地位.相对于图像分类任务而言,目标检测会更加复杂一些,不 ...
随机推荐
- Eclipse用法和技巧十七:覆盖父类方法
在学校里面学习java,遇到访问权限修饰符一直停留在public是公有的,外面可以访问:protected是对子类可见的,外部不可以访问:private仅在本类中可见.工作之后,接触到了java代码多 ...
- 《UNIX环境高级编程》笔记--read函数,write函数,lseek函数
1.read函数 调用read函数从文件去读数据,函数定义如下: #include <unistd.h> ssize_t read(int filedes, void* buff, siz ...
- 14.18 InnoDB Backup and Recovery 备份和恢复:
14.18 InnoDB Backup and Recovery 备份和恢复: 安全数据库管理的关键是 做定期的备份,依赖你的数据卷, MySQL server的数量和数据库的负载,你可以使用那些技术 ...
- C++学习之路—继承与派生(四)拓展与总结
(根据<C++程序设计>(谭浩强)整理,整理者:华科小涛,@http://www.cnblogs.com/hust-ghtao转载请注明) 1 拓展部分 本节主要由两部分内容组成,分 ...
- VS关闭Browser Link
原文:VS关闭Browser Link 这是VS2013的一个新功能,叫Browser Link,基于SignalR. 它可以实现VS IDE和你的程序的双向通讯,在IDE编辑代码即刻将修改发送到浏览 ...
- c#1所搭建的核心基础之类型系统的特征
类型系统的特征简介 几乎每种编程语言都有某种形式的一个类型系统.类型系统大致被分为:强/弱,安全/不安全,静态/动态,显式/隐式等类型. c#在类型系统世界中的位置 c#1的类型系统是静态的.显式的和 ...
- Cocos2dx中Plugin-X 在android下的整合
直接拉plugin-x中的jar包导入到Eclipse中就可以.用这么麻烦的工具干嘛.
- cpu性能探究 :cache line 原理
參考: 一个解说Direct Mapped Cache很深入浅出的文章: http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Memory/dir ...
- C中程序的内存分配
一.预备知识—程序的内存分配 一个由c/C++编译的程序占用的内存分为以下几个部分 1.栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等.其操作方式类似于数据结构中的栈. ...
- C++中出现的计算机术语1
access labels(訪问标号) 类的成员能够定义为 private,这能够防止使用该类型的代码訪问该成员. 成员还能够定义为 public,这将使该整个程序中都可訪问成员. address( ...