DeepLabV3+语义分割实战

语义分割是计算机视觉的一项重要任务,本文使用Jittor框架实现了DeepLabV3+语义分割模型。

DeepLabV3+论文:https://arxiv.org/pdf/1802.02611.pdf

完整代码:https://github.com/Jittor/deeplab-jittor

1. 数据集

1.1 数据准备

VOC2012数据集是目标检测、语义分割等任务常用的数据集之一, 本文使用VOC数据集的2012 trainaug (train + sbd set)作为训练集,2012 val set作为测试集。

VOC数据集中的物体共包括20个前景类别:'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' 和背景类别

最终数据集的文件组织如下。

# 文件组织
根目录
|----voc_aug
|    |----datalist
|    |    |----train.txt
|    |    |----val.txt
|    |----images
|    |----annotations

1.2 数据加载

使用jittor.dataset.dataset的基类Dataset可以构造自己的数据集,需要实现__init____getitem__、函数。

  1. __init__: 定义数据路径,这里的data_root需设置为之前设定的 voc_augsplit 为 train val test 之一,表示选择训练集、验证集还是测试集。同时需要调用self.set_attr来指定数据集加载所需的参数batch_sizetotal_lenshuffle
  2. __getitem__: 返回单个item的数据。
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
from jittor.dataset.dataset import Dataset, dataset_root
import jittor as jt
import os
import os.path as osp
from PIL import Image, ImageOps, ImageFilter
import numpy as np
import scipy.io as sio
import random
 
def fetch(image_path, label_path):
    with open(image_path, 'rb') as fp:
        image = Image.open(fp).convert('RGB')
 
    with open(label_path, 'rb') as fp:
        label = Image.open(fp).convert('P')
 
    return image, label
 
 
def scale(image, label):
    SCALES = (0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0)
    ratio = np.random.choice(SCALES)
    w,h = image.size
    nw = (int)(w*ratio)
    nh = (int)(h*ratio)
 
    image = image.resize((nw, nh), Image.BILINEAR)
    label = label.resize((nw, nh), Image.NEAREST)
 
    return image, label
 
 
def pad(image, label):
    w,h = image.size
    crop_size = 513
    pad_h = max(crop_size - h, 0)
    pad_w = max(crop_size - w, 0)
    image = ImageOps.expand(image, border=(0, 0, pad_w, pad_h), fill=0)
    label = ImageOps.expand(label, border=(0, 0, pad_w, pad_h), fill=255)
 
    return image, label
 
 
def crop(image, label):
    w, h = image.size
    crop_size = 513
    x1 = random.randint(0, w - crop_size)
    y1 = random.randint(0, h - crop_size)
    image = image.crop((x1, y1, x1 + crop_size, y1 + crop_size))
    label = label.crop((x1, y1, x1 + crop_size, y1 + crop_size))
 
 
    return image, label
 
 
def normalize(image, label):
    mean = (0.485, 0.456, 0.40)
    std = (0.229, 0.224, 0.225)
    image = np.array(image).astype(np.float32)
    label = np.array(label).astype(np.float32)
 
    image /= 255.0
    image -= mean
    image /= std
    return image, label
 
 
def flip(image, label):
    if random.random() < 0.5:
        image = image.transpose(Image.FLIP_LEFT_RIGHT)
        label = label.transpose(Image.FLIP_LEFT_RIGHT)
    return image, label
 
 
class BaseDataset(Dataset):
    def __init__(self,  data_root='/voc/', split='train', batch_size=1, shuffle=False):
        super().__init__()
        ''' total_len , batch_size, shuffle must be set '''
        self.data_root = data_root
        self.split = split
        self.batch_size = batch_size
        self.shuffle = shuffle
 
        self.image_root = os.path.join(data_root, 'images')
        self.label_root = os.path.join(data_root, 'annotations')
 
        self.data_list_path = os.path.join(self.data_root,'/datalist/' + self.split + '.txt')
        self.image_path = []
        self.label_path = []
 
        with open(self.data_list_path, "r") as f:
            lines = f.read().splitlines()
 
        for idx, line in enumerate(lines):
            _img_path = os.path.join(self.image_root, line + '.jpg')
            _label_path = os.path.join(self.label_root, line + '.png')
 
            assert os.path.isfile(_img_path)
            assert os.path.isfile(_label_path)
            self.image_path.append(_img_path)
            self.label_path.append(_label_path)
        self.total_len = len(self.image_path)
 
        # set_attr must be called to set batch size total len and shuffle like __len__ function in pytorch
        self.set_attr(batch_size = self.batch_size, total_len = self.total_len, shuffle = self.shuffle) # bs , total_len, shuffle
 
 
    def __getitem__(self, image_id):
        return NotImplementedError
 
 
class TrainDataset(BaseDataset):
    def __init__(self,  data_root='/voc/', split='train', batch_size=1, shuffle=False):
        super(TrainDataset, self).__init__(data_root, split, batch_size, shuffle)
 
    def __getitem__(self, image_id):
        image_path = self.image_path[image_id]
        label_path = self.label_path[image_id]
        image, label = fetch(image_path, label_path)
        image, label = scale(image, label)
        image, label = pad(image, label)
        image, label = crop(image, label)
        image, label = flip(image, label)
        image, label = normalize(image, label)
        image = np.array(image).astype(np.float).transpose(2, 0, 1)
        image = jt.array(image)
        label = jt.array(np.array(label).astype(np.int))
        return image, label
 
 
class ValDataset(BaseDataset):
    def __init__(self,  data_root='/voc/', split='train', batch_size=1, shuffle=False):
        super(ValDataset, self).__init__(data_root, split, batch_size, shuffle)
        
    def __getitem__(self, image_id):
        image_path = self.image_path[image_id]
        label_path = self.label_path[image_id]
 
        image, label = fetch(image_path, label_path)
        image, label = normalize(image, label)
 
        image = np.array(image).astype(np.float).transpose(2, 0, 1)
        image = jt.array(image)
        label = jt.array(np.array(label).astype(np.int))
 
        return image, label
 

2. 模型定义

上图为DeepLabV3+论文给出的网络架构图。本文采用ResNebackbone。输入图像尺寸为513*513

整个网络可以分成 backbone aspp decoder 三个部分。

2.1 backbonb 这里使用最常见的ResNet,作为backbone并且在ResNet的最后两次使用空洞卷积来扩大感受野,其完整定义如下:

import jittor as jt
from jittor import nn
from jittor import Module
from jittor import init
from jittor.contrib import concat, argmax_pool
import time
 
 
class Bottleneck(Module):
    expansion = 4
    def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm(planes)
        self.conv2 = nn.Conv(planes, planes, kernel_size=3, stride=stride,
                               dilation=dilation, padding=dilation, bias=False)
        self.bn2 = nn.BatchNorm(planes)
        self.conv3 = nn.Conv(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm(planes * 4)
        self.relu = nn.ReLU()
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
 
    def execute(self, x):
        residual = x
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
 
        out = self.conv3(out)
        out = self.bn3(out)
 
        if self.downsample is not None:
            residual = self.downsample(x)
 
        out += residual
        out = self.relu(out)
 
        return out
 
 
class ResNet(Module):
    def __init__(self, block, layers, output_stride):
        super(ResNet, self).__init__()
        self.inplanes = 64
        blocks = [1, 2, 4]
        if output_stride == 16:
            strides = [1, 2, 2, 1]
            dilations = [1, 1, 1, 2]
        elif output_stride == 8:
            strides = [1, 2, 1, 1]
            dilations = [1, 1, 2, 4]
        else:
            raise NotImplementedError
 
        # Modules
        self.conv1 = nn.Conv(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm(64)
        self.relu = nn.ReLU()
        # self.maxpool = nn.Pool(kernel_size=3, stride=2, padding=1)
 
        self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], dilation=dilations[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2])
        self.layer4 = self._make_MG_unit(block, 512, blocks=blocks, stride=strides[3], dilation=dilations[3])
 
 
    def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm(planes * block.expansion),
            )
 
        layers = []
        layers.append(block(self.inplanes, planes, stride, dilation, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, dilation=dilation))
 
        return nn.Sequential(*layers)
 
    def _make_MG_unit(self, block, planes, blocks, stride=1, dilation=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm(planes * block.expansion),
            )
 
        layers = []
        layers.append(block(self.inplanes, planes, stride, dilation=blocks[0]*dilation,
                            downsample=downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, len(blocks)):
            layers.append(block(self.inplanes, planes, stride=1,
                                dilation=blocks[i]*dilation))
 
        return nn.Sequential(*layers)
 
    def execute(self, input):
 
        x = self.conv1(input)
        x = self.bn1(x)
        x = self.relu(x)
        x = argmax_pool(x, 2, 2)
        x = self.layer1(x)
 
        low_level_feat = x
        x = self.layer2(x)
        x = self.layer3(x)
 
        x = self.layer4(x)
        return x, low_level_feat
 
def resnet50(output_stride):
    model = ResNet(Bottleneck, [3,4,6,3], output_stride)
    return model
 
def resnet101(output_stride):
    model = ResNet(Bottleneck, [3,4,23,3], output_stride)
    return model
 

2.2 ASPP 

即使用不同尺寸的 dilation conv 对 backbone 得到的 feature map 进行卷积,最后 concat 并整合得到新的特征。

import jittor as jt
from jittor import nn
from jittor import Module
from jittor import init
from jittor.contrib import concat
 
 
class Single_ASPPModule(Module):
    def __init__(self, inplanes, planes, kernel_size, padding, dilation):
        super(Single_ASPPModule, self).__init__()
        self.atrous_conv = nn.Conv(inplanes, planes, kernel_size=kernel_size,
                                            stride=1, padding=padding, dilation=dilation, bias=False)
        self.bn = nn.BatchNorm(planes)
        self.relu = nn.ReLU()
 
    def execute(self, x):
        x = self.atrous_conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x
 
class ASPP(Module):
    def __init__(self, output_stride):
        super(ASPP, self).__init__()
        inplanes = 2048
        if output_stride == 16:
            dilations = [1, 6, 12, 18]
        elif output_stride == 8:
            dilations = [1, 12, 24, 36]
        else:
            raise NotImplementedError
 
        self.aspp1 = Single_ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0])
        self.aspp2 = Single_ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1])
        self.aspp3 = Single_ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2])
        self.aspp4 = Single_ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3])
        self.global_avg_pool = nn.Sequential(GlobalPooling(),
                                             nn.Conv(inplanes, 256, 1, stride=1, bias=False),
                                             nn.BatchNorm(256),
                                             nn.ReLU())
        self.conv1 = nn.Conv(1280, 256, 1, bias=False)
        
        self.bn1 = nn.BatchNorm(256)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
 
    def execute(self, x):
        x1 = self.aspp1(x)
        x2 = self.aspp2(x)
        x3 = self.aspp3(x)
        x4 = self.aspp4(x)
        x5 = self.global_avg_pool(x)
        x5 = x5.broadcast((1,1,x4.shape[2],x4.shape[3]))
        x = concat((x1, x2, x3, x4, x5), dim=1)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.dropout(x)
        return x
 
class GlobalPooling (Module):
    def __init__(self):
        super(GlobalPooling, self).__init__()
    def execute (self, x):
        return jt.mean(x, dims=[2,3], keepdims=1)
 

2.3 Decoder:

Decoder 将 ASPP 的特征放大后与 ResNet 的中间特征一起 concat, 得到最后分割所用的特征。

import jittor as jt
from jittor import nn
from jittor import Module
from jittor import init
from jittor.contrib import concat
import time
 
class Decoder(nn.Module):
    def __init__(self, num_classes):
        super(Decoder, self).__init__()
        low_level_inplanes = 256
 
        self.conv1 = nn.Conv(low_level_inplanes, 48, 1, bias=False)
        self.bn1 = nn.BatchNorm(48)
        self.relu = nn.ReLU()
        self.last_conv = nn.Sequential(nn.Conv(304, 256, kernel_size=3, stride=1, padding=1, bias=False),
                                       nn.BatchNorm(256),
                                       nn.ReLU(),
                                       nn.Dropout(0.5),
                                       nn.Conv(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
                                       nn.BatchNorm(256),
                                       nn.ReLU(),
                                       nn.Dropout(0.1),
                                       nn.Conv(256, num_classes, kernel_size=1, stride=1, bias=True))
 
    def execute(self, x, low_level_feat):
        low_level_feat = self.conv1(low_level_feat)
        low_level_feat = self.bn1(low_level_feat)
        low_level_feat = self.relu(low_level_feat)
 
        x_inter = nn.resize(x, size=(low_level_feat.shape[2], low_level_feat.shape[3]) , mode='bilinear')
        x_concat = concat((x_inter, low_level_feat), dim=1)
        x = self.last_conv(x_concat)
        return x

2.4 完整的模型整合如下: 即将以上部分通过一个类连接起来。

import jittor as jt
from jittor import nn
from jittor import Module
from jittor import init
from jittor.contrib import concat
from decoder import Decoder
from aspp import ASPP
from backbone import resnet50, resnet101
 
class DeepLab(Module):
    def __init__(self, output_stride=16, num_classes=21):
        super(DeepLab, self).__init__()
        self.backbone = resnet101(output_stride=output_stride)
        self.aspp = ASPP(output_stride)
        self.decoder = Decoder(num_classes)
 
    def execute(self, input):
        x, low_level_feat = self.backbone(input)
        x = self.aspp(x)
        x = self.decoder(x, low_level_feat)
        x = nn.resize(x, size=(input.shape[2], input.shape[3]), mode='bilinear')
        return x
 

3. 模型训练

3.1 模型训练参数设定如下:

# Learning parameters
batch_size = 8
learning_rate = 0.005
momentum = 0.9
weight_decay = 1e-4
epochs = 50
 

3.2 定义模型、优化器、数据加载器。

model = DeepLab(output_stride=16, num_classes=21)
optimizer = nn.SGD(model.parameters(), 
                   lr,
                   momentum=momentum, 
                   weight_decay=weight_decay)
train_loader = TrainDataset(data_root='/vocdata/',
                            split='train',
                            batch_size=batch_size,
                            shuffle=True)
val_loader = ValDataset(data_root='/vocdata/',
                        split='val',
                        batch_size=1,
                        shuffle=False)
 

3.3 模型训练与验证

# lr scheduler
def poly_lr_scheduler(opt, init_lr, iter, epoch, max_iter, max_epoch):
    new_lr = init_lr * (1 - float(epoch * max_iter + iter) / (max_epoch * max_iter)) ** 0.9
    opt.lr = new_lr
 
# train function
def train(model, train_loader, optimizer, epoch, init_lr):
    model.train()
    max_iter = len(train_loader)
 
    for idx, (image, target) in enumerate(train_loader):
        poly_lr_scheduler(optimizer, init_lr, idx, epoch, max_iter, 50) # using poly_lr_scheduler 
        image = image.float32()
        pred = model(image)
        loss = nn.cross_entropy_loss(pred, target, ignore_index=255)
        optimizer.step (loss)
        print ('Training in epoch {} iteration {} loss = {}'.format(epoch, idx, loss.data[0]))
 
# val function
# we omit evaluator code and you can 
def val (model, val_loader, epoch, evaluator):
    model.eval()
    evaluator.reset()
    for idx, (image, target) in enumerate(val_loader):
        image = image.float32()
        output = model(image)
        pred = output.data
        target = target.data
        pred = np.argmax(pred, axis=1)
        evaluator.add_batch(target, pred)
        print ('Test in epoch {} iteration {}'.format(epoch, idx))
    Acc = evaluator.Pixel_Accuracy()
    Acc_class = evaluator.Pixel_Accuracy_Class()
    mIoU = evaluator.Mean_Intersection_over_Union()
    FWIoU = evaluator.Frequency_Weighted_Intersection_over_Union()
    best_miou = 0.0
 
    if (mIoU > best_miou):
        best_miou = mIoU
    print ('Testing result of epoch {} miou = {} Acc = {} Acc_class = {} \
                FWIoU = {} Best Miou = {}'.format(epoch, mIoU, Acc, Acc_class, FWIoU, best_miou)) 

3.4 evaluator 写法:使用混淆矩阵计算 Pixel accuracy 和 mIoU。

class Evaluator(object):
    def __init__(self, num_class):
        self.num_class = num_class
        self.confusion_matrix = np.zeros((self.num_class,)*2)
 
    def Pixel_Accuracy(self):
        Acc = np.diag(self.confusion_matrix).sum() / self.confusion_matrix.sum()
        return Acc
 
    def Pixel_Accuracy_Class(self):
        Acc = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(axis=1)
        Acc = np.nanmean(Acc)
        return Acc
 
    def Mean_Intersection_over_Union(self):
        MIoU = np.diag(self.confusion_matrix) / (
                 np.sum(self.confusion_matrix, axis=1) + 
                 np.sum(self.confusion_matrix, axis=0)-
                 np.diag(self.confusion_matrix))
        MIoU = np.nanmean(MIoU)
        return MIoU
 
    def Frequency_Weighted_Intersection_over_Union(self):
        freq = np.sum(self.confusion_matrix, axis=1) / np.sum(self.confusion_matrix)
        iu = np.diag(self.confusion_matrix) / (
                    np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) -
                    np.diag(self.confusion_matrix))
 
        FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()
        return FWIoU
 
    def _generate_matrix(self, gt_image, pre_image):
        mask = (gt_image >= 0) & (gt_image < self.num_class)
        label = self.num_class * gt_image[mask].astype('int') + pre_image[mask]
        count = np.bincount(label, minlength=self.num_class**2)
        confusion_matrix = count.reshape(self.num_class, self.num_class)
        return confusion_matrix
 
    def add_batch(self, gt_image, pre_image):
        assert gt_image.shape == pre_image.shape
        self.confusion_matrix += self._generate_matrix(gt_image, pre_image)
 
    def reset(self):
        self.confusion_matrix = np.zeros((self.num_class,) * 2)

3.5 训练入口函数

epochs = 50
evaluator = Evaluator(21)
train_loader = TrainDataset(data_root='/voc/data/path/', split='train', batch_size=8, shuffle=True)
val_loader = ValDataset(data_root='/voc/data/path/', split='val', batch_size=1, shuffle=False)
learning_rate = 0.005
momentum = 0.9
weight_decay = 1e-4
optimizer = nn.SGD(model.parameters(), learning_rate, momentum, weight_decay)
 
for epoch in range (epochs):
    train(model, train_loader, optimizer, epoch, learning_rate)
    val(model, val_loader, epoch, evaluator)

4. 参考

  1. pytorch-deeplab-xception
  2. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

DeepLabV3+语义分割实战的更多相关文章

  1. 人工智能必须要知道的语义分割模型:DeepLabv3+

    图像分割是计算机视觉中除了分类和检测外的另一项基本任务,它意味着要将图片根据内容分割成不同的块.相比图像分类和检测,分割是一项更精细的工作,因为需要对每个像素点分类,如下图的街景分割,由于对每个像素点 ...

  2. 全卷积网络(FCN)实战:使用FCN实现语义分割

    摘要:FCN对图像进行像素级的分类,从而解决了语义级别的图像分割问题. 本文分享自华为云社区<全卷积网络(FCN)实战:使用FCN实现语义分割>,作者: AI浩. FCN对图像进行像素级的 ...

  3. 使用LabVIEW实现基于pytorch的DeepLabv3图像语义分割

    前言 今天我们一起来看一下如何使用LabVIEW实现语义分割. 一.什么是语义分割 图像语义分割(semantic segmentation),从字面意思上理解就是让计算机根据图像的语义来进行分割,例 ...

  4. 自动网络搜索(NAS)在语义分割上的应用(二)

    前言: 本文将介绍如何基于ProxylessNAS搜索semantic segmentation模型,最终搜索得到的模型结构可在CPU上达到36 fps的测试结果,展示自动网络搜索(NAS)在语义分割 ...

  5. 语义分割的简单指南 A Simple Guide to Semantic Segmentation

    语义分割是将标签分配给图像中的每个像素的过程.这与分类形成鲜明对比,其中单个标签被分配给整个图片.语义分段将同一类的多个对象视为单个实体.另一方面,实例分段将同一类的多个对象视为不同的单个对象(或实例 ...

  6. 语义分割丨PSPNet源码解析「训练阶段」

    引言 之前一段时间在参与语义分割的项目,最近有时间了,正好把这段时间的所学总结一下. 在代码上,语义分割的框架会比目标检测简单很多,但其中也涉及了很多细节.在这篇文章中,我以PSPNet为例,解读一下 ...

  7. 语义分割丨DeepLab系列总结「v1、v2、v3、v3+」

    花了点时间梳理了一下DeepLab系列的工作,主要关注每篇工作的背景和贡献,理清它们之间的联系,而实验和部分细节并没有过多介绍,请见谅. DeepLabv1 Semantic image segmen ...

  8. Learning a Discriminative Feature Network for Semantic Segmentation(语义分割DFN,区别特征网络)

    1.介绍 语义分割通常有两个问题:类内不一致性(同一物体分成两类)和类间不确定性(不同物体分成同一类).本文从宏观角度,认为语义分割不是标记像素而是标记一个整体,提出了两个结构解决这两个问题,平滑网络 ...

  9. 自动网络搜索(NAS)在语义分割上的应用(一)

    [摘要]本文简单介绍了NAS的发展现况和在语义分割中的应用,并且详细解读了两篇流行的work:DARTS和Auto-DeepLab. 自动网络搜索 多数神经网络结构都是基于一些成熟的backbone, ...

随机推荐

  1. 【JVM】JVM中的垃圾收集器

    垃圾收集器组合 Serial+Serial Old Serial+CMS ParNew+CMS ParNew+Serial Old Paralle Scavenge + Serial Old Para ...

  2. python 实现最有对其

    print("|","Ursula".ljust(20,""),"|") # 左对齐 print("|&quo ...

  3. Intel汇编程序设计-整数算术指令(下)

    7.5  扩展加法和减法 扩展精度的假发和减法是指任意尺寸大小数字的加法和减法.例如要求你写一个C++程序,把两个1024位的整数相加,解决方案可不是那么简单!但在汇编语言中,ADC(带进位加)指令和 ...

  4. MySQL从库维护经验分享

    前言: MySQL 主从架构应该是最常用的一组架构了.从库会实时同步主库传输来的数据,一般从库可以作为备用节点或作查询使用.其实不只是主库需要多关注,从库有时候也要经常维护,本篇文章将会分享几点从库维 ...

  5. 是时候学习Linux了

    前言: Linux是一个开源.免费的操作系统.其稳定性.安全性.处理多并发已经得到业界的认可,目前很多企业级的项目都会部署到Linux/unix系统上.如果你还不太了解Linux,希望本篇文章能够带你 ...

  6. OOP第一章总结

    经过了三周的OO,尽管过程不太轻松,但是有所得还是值得欣慰的事! (1)程序结构 第一次作业: UML类图如下,第一次作业在结构上并没有太多面向对象的思想,只是简单的分类,一个运行类,两个对象类,预处 ...

  7. BUAA-OO-第四单元总结——终章

    面向对象第四单元博客总结--终章 第四单元作业设计 第13次作业设计 类和对应方法属性设计 类设计如下图所示 本次作业主要涉及六个类,其中包括主类 Main ,通用Map类 UmlElementIdM ...

  8. [bug] SpringBoot 集成 jsp,访问时页面报Whitelabel Error Page

    参考 https://bbs.csdn.net/topics/392187702

  9. [c++] 二级指针的原理

    示例 将值(实参)传递给值(形参),无法更改val 1 #include <iostream> 2 using namespace std; 3 4 void change(int mem ...

  10. node.js的包加载机制

    加载一个模块 require('moduleName'); 现在核心模块中加载,如果核心模块中没有,那么就去node_modules目录下去找,核心模块的优先级最高. 如果加载模块式省略了文件的后缀名 ...