二分枚举答案,判定答案是否合法

贪心:每一个叶子只能经过一遍,因此叶子的顺序一定是一个dfs序,即走完一棵子树中的所有叶子才会到子树外

根据这个贪心可以dp,设$f[k][l][r]$表示仅考虑$k$的子树,$l$和$r$为第一个和最后一个叶子到根的距离,时间复杂度大约有$o(n^{4或5})$,无法通过

考虑优化,将所有$f[k][l][r]=1$的$(l,r)$记录下来,若存在$l'\le l$且$r'\le r$,$(l,r)$一定没有意义,这可以用一个单调栈来维护,那么同一个$l/r$所对应的$r/l$最多只有1个

转移考虑合并,不妨假设左子树比右子树小,枚举左子树中的$(l_{1},r_{1})$,对于右子树中的$(l_{2},r_{2})$,有两种转移的可能:1.若$r_{1}+l_{2}+v_{ls}+v_{rs}\le ans$,转移到$(l_{1}+v_{ls},r_{2}+v_{rs})$;2.若$l_{1}+r_{2}+v_{ls}+v_{rs}\le ans$,转移到$(l_{2}+v_{rs},r_{1}+v_{ls})$

可以利用单调性来优化,即找到满足$l_{2}\le ans-r_{1}-v_{ls}-v_{rs}$且$r_{2}$最小的位置(第一种转移),那么每一组$(l_{1},r_{1})$最多转移到$k$中的两个状态(反之同理),即有$|state[k]|\le 2\min(|state[ls]|,|state[rs]|)$,空间复杂度为$o(n\log_{2}n)$,时间复杂度即为空间复杂度乘上二分,为$o(n\log^{\ 2}_{2}n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define ll long long
5 #define fi first
6 #define se second
7 vector<pair<ll,ll> >v,f[N];
8 int n,x,ls[N],rs[N],w[N];
9 ll ans;
10 void dfs(int k){
11 f[k].clear();
12 if ((!ls[k])&&(!rs[k])){
13 f[k].push_back(make_pair(0,0));
14 return;
15 }
16 dfs(ls[k]);
17 dfs(rs[k]);
18 ll s=ans-w[ls[k]]-w[rs[k]];
19 for(int i=0,j=0;i<f[ls[k]].size();i++){
20 while ((j<f[rs[k]].size())&&(f[rs[k]][j].fi<=s-f[ls[k]][i].se))j++;
21 if ((j)&&(f[rs[k]][j-1].fi<=s-f[ls[k]][i].se))f[k].push_back(make_pair(f[ls[k]][i].fi+w[ls[k]],f[rs[k]][j-1].se+w[rs[k]]));
22 }
23 swap(ls[k],rs[k]);
24 for(int i=0,j=0;i<f[ls[k]].size();i++){
25 while ((j<f[rs[k]].size())&&(f[rs[k]][j].fi<=s-f[ls[k]][i].se))j++;
26 if ((j)&&(f[rs[k]][j-1].fi<=s-f[ls[k]][i].se))f[k].push_back(make_pair(f[ls[k]][i].fi+w[ls[k]],f[rs[k]][j-1].se+w[rs[k]]));
27 }
28 if (!f[k].size())return;
29 sort(f[k].begin(),f[k].end());
30 v.clear();
31 v.push_back(f[k][0]);
32 for(int i=1;i<f[k].size();i++)
33 if (f[k][i].se<v[(int)v.size()-1].se)v.push_back(f[k][i]);
34 f[k]=v;
35 }
36 bool pd(ll k){
37 ans=k;
38 dfs(1);
39 return f[1].size();
40 }
41 int main(){
42 scanf("%d",&n);
43 for(int i=2;i<=n;i++){
44 scanf("%d%d",&x,&w[i]);
45 if (!ls[x])ls[x]=i;
46 else rs[x]=i;
47 }
48 ll l=0,r=1LL*N*N;
49 while (l<r){
50 ll mid=(l+r>>1);
51 if (pd(mid))r=mid;
52 else l=mid+1;
53 }
54 printf("%lld",l);
55 }

[atAGC007E]Shik and Travel的更多相关文章

  1. 【AtCoder Grand Contest 007E】Shik and Travel [Dfs][二分答案]

    Shik and Travel Time Limit: 50 Sec  Memory Limit: 512 MB Description 给定一棵n个点的树,保证一个点出度为2/0. 遍历一遍,要求每 ...

  2. AGC007E Shik and Travel 解题报告

    AGC007E Shik and Travel 题目大意:\(n\) 个点的二叉树,每个点要么两个儿子,要么没有儿子,每条边有边权. 你从 \(1\) 号节点出发,走到一个叶子节点.然后每一天,你可以 ...

  3. [AT2172] [agc007_e] Shik and Travel

    题目链接 AtCoder:https://agc007.contest.atcoder.jp/tasks/agc007_e 洛谷:https://www.luogu.org/problemnew/sh ...

  4. AtCoder Grand Contest 007 E:Shik and Travel

    题目传送门:https://agc007.contest.atcoder.jp/tasks/agc007_e 题目翻译 现在有一个二叉树,除了叶子每个结点都有两个儿子.这个二叉树一共有\(m\)个叶子 ...

  5. AT2172 Shik and Travel

    题目描述: luogu 题解: 二分+暴力$vector$+$dfs$. 记录下所有可能的子树内合法方案,双指针+归并合并. 代码: #include<vector> #include&l ...

  6. [AGC007E] Shik and Travel

    题目 给定一棵n节点的 以1为根的 满二叉树 (每个非叶子节点恰好有两个儿子)n−1 条边. 第ii条边连接 i+1号点 和 ai, 经过代价为vi设这棵树有m个叶子节点定义一次合法的旅行为:(1) ...

  7. AtCoder AGC007E Shik and Travel (二分、DP、启发式合并)

    题目链接 https://atcoder.jp/contests/agc007/tasks/agc007_e 题解 首先有个很朴素的想法是,二分答案\(mid\)后使用可行性DP, 设\(dp[u][ ...

  8. AtCoder Grand Contest 007

    AtCoder Grand Contest 007 A - Shik and Stone 翻译 见洛谷 题解 傻逼玩意 #include<cstdio> int n,m,tot;char ...

  9. AtCoder Grand Contest

    一句话题解 QwQ主要是因为这篇文章写的有点长……有时候要找某一个题可能不是很好找,所以写了这个东西. 具体的题意.题解和代码可以再往下翻._(:з」∠)_ AGC 001 C:枚举中点/中边. D: ...

随机推荐

  1. Java集合 - 集合知识点总结概述

    集合概述 概念:对象的容器,定义了对多个对象进项操作的的常用方法.可实现数组的功能. 和数组的区别: 数组长度固定,集合长度不固定. 数组可以存储基本类型和引用类型,集合只能存储引用类型. 位置: j ...

  2. 痞子衡嵌入式:超级下载算法RT-UFL v1.0在Keil MDK下的使用

    痞子衡主导的"学术"项目 <RT-UFL - 一个适用全平台i.MXRT的超级下载算法设计> v1.0 版发布近 4 个月了,部分客户已经在实际项目开发调试中用上了这个 ...

  3. kivy画个半圆

    from kivy.uix.boxlayout import BoxLayout from kivy.app import App class BoxLayoutWidget(BoxLayout): ...

  4. SpringCloud微服务实战——搭建企业级开发框架(七):自定义通用响应消息及统一异常处理

      平时开发过程中,无可避免我们需要处理各类异常,所以这里我们在公共模块中自定义统一异常,Spring Boot 提供 @RestControllerAdvice 注解统一异常处理,我们在GitEgg ...

  5. the Agiles Scrum Meeting 4

    会议时间:2020.4.12 20:00 1.每个人的工作 今天已完成的工作 yjy:基本完成广播功能,修复bug issues:小组任务1-增量开发组 Bug:冲刺 wjx:继续实现注销功能的后端 ...

  6. spring cache整合redis

    在项目中,我们经常需要将一些常用的数据使用缓存起来,避免频繁的查询数据库造成效率低下.spring 为我们提供了一套基于注解的缓存实现,方便我们实际的开发.我们可以扩展spring的cache接口以达 ...

  7. elasticsearch的索引操作

    1.创建索引(test_index) curl -XPUT "http://192.168.99.1:9200/test_index" 2.创建索引,指定分片和副本的数量 curl ...

  8. 【做题记录】 [JLOI2011]不等式组

    P5482 [JLOI2011]不等式组 超烦人的细节题!(本人调了两天 QAQ ) 这里介绍一种只用到一只树状数组的写法(离线). 树状数组的下标是:所有可能出现的数据进行离散化之后的值. 其含义为 ...

  9. PCIE学习笔记--PCIe错误源详解(二)

    转载地址:http://blog.chinaaet.com/justlxy/p/5100057799 这篇文章主要介绍事务(Transaction)错误.链路流量控制(Link Flow Contro ...

  10. cf17A Noldbach problem(额,,,素数,,,)

    题意: 判断从[2,N]中是否有超过[包括]K个数满足:等于一加两个相邻的素数. 思路: 枚举. 也可以:筛完素数,枚举素数,直到相邻素数和超过N.统计个数 代码: int n,k; int prim ...