令$tot_{i}$为区间$[l,r]$中满足$a_{j}=i$的$j$的个数,将所有非0的$tot_{i}$取出,得到可重集$S$

显然,有以下贪心:不断取出$S$中最小的两个元素,删除这两个元素并加入这两个元素的和,直至$|S|=1$,每一次两个元素的和的和即为答案

使用莫队可以在$o(n\log n)$的时间内得到$S$,但上述过程暴力的复杂度为$o(n\log n)$,无法通过

设置阈值$B$,考虑将上述过程分为两部分——$S$中存在元素$\le B$和$S$中所有元素都$>B$

在第一个部分中,我们可以记录$\le B$的每一个元素的个数,并根据奇偶性简单处理即可(特别的,若恰存在一个元素$\le B$,可以看作所有元素都$>B$),复杂度为$o(B)$

在第二个部分中,显然元素个数不超过$\frac{n}{B}$,直接用上述过程即可,复杂度为$o(\frac{n\log n}{B})$

取$B=\sqrt{n\log n}$即可,总复杂度为$o(n\sqrt{n\log n})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define ll long long
5 struct Query{
6 int x,y,id;
7 }q[N];
8 multiset<ll>S,S0;
9 int K,B,n,m,a[N],tot[N],sum[N],sum0[N];
10 ll ans[N];
11 bool cmp(Query x,Query y){
12 return (x.x/K<y.x/K)||(x.x/K==y.x/K)&&(x.y<y.y);
13 }
14 void add_times(int x){
15 if (x<=B)sum[x]++;
16 else S.insert(x);
17 }
18 void dec_times(int x){
19 if (x<=B)sum[x]--;
20 else S.erase(S.find(x));
21 }
22 void update_val(int x,int p){
23 dec_times(tot[x]);
24 tot[x]+=p;
25 add_times(tot[x]);
26 }
27 ll calc(){
28 ll ans=0;
29 S0=S;
30 for(int i=1;i<=B;i++)sum0[i]=sum[i];
31 int lst=0;
32 for(int i=1;i<=B;i++){
33 if (!sum[i])continue;
34 if (lst){
35 sum[i]--;
36 add_times(lst+i);
37 ans+=lst+i;
38 lst=0;
39 }
40 ans+=1LL*(sum[i]/2)*(2*i);
41 if (2*i<=B)sum[2*i]+=sum[i]/2;
42 else{
43 for(int j=1;j<=sum[i]/2;j++)S.insert(2*i);
44 }
45 if (sum[i]&1)lst=i;
46 }
47 if (lst)S.insert(lst);
48 while (S.size()>1){
49 int x=(*S.begin());
50 S.erase(S.begin());
51 int y=(*S.begin());
52 S.erase(S.begin());
53 ans+=x+y;
54 S.insert(x+y);
55 }
56 S=S0;
57 for(int i=1;i<=B;i++)sum[i]=sum0[i];
58 return ans;
59 }
60 int main(){
61 scanf("%d",&n);
62 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
63 K=(int)sqrt(n),B=(int)sqrt(n*log2(n));
64 scanf("%d",&m);
65 for(int i=1;i<=m;i++){
66 scanf("%d%d",&q[i].x,&q[i].y);
67 q[i].id=i;
68 }
69 sort(q+1,q+m+1,cmp);
70 int x=1,y=0;
71 for(int i=1;i<=m;i++){
72 while (q[i].x<x)update_val(a[--x],1);
73 while (y<q[i].y)update_val(a[++y],1);
74 while (x<q[i].x)update_val(a[x++],-1);
75 while (q[i].y<y)update_val(a[y--],-1);
76 ans[q[i].id]=calc();
77 }
78 for(int i=1;i<=m;i++)printf("%lld\n",ans[i]);
79 }

[cf700D]Huffman Coding on Segment的更多相关文章

  1. 【CodeForces】700 D. Huffman Coding on Segment 哈夫曼树+莫队+分块

    [题目]D. Huffman Coding on Segment [题意]给定n个数字,m次询问区间[l,r]的数字的哈夫曼编码总长.1<=n,m,ai<=10^5. [算法]哈夫曼树+莫 ...

  2. Codeforces 700D - Huffman Coding on Segment(莫队+根分)

    Codeforces 题目传送门 & 洛谷题目传送门 好家伙,刚拿到此题时我连啥是 huffman 编码都不知道 一种对 \(k\) 个字符进行的 huffman 编码的方案可以看作一个由 \ ...

  3. hdu 1053 (huffman coding, greedy algorithm, std::partition, std::priority_queue ) 分类: hdoj 2015-06-18 19:11 22人阅读 评论(0) 收藏

    huffman coding, greedy algorithm. std::priority_queue, std::partition, when i use the three commente ...

  4. [IR] Huffman Coding

    为了保证:Block中,所有的叶子在所有的中间结点的前面.Static: Huffman coding Dynamic: Adaptive Huffman 一些概念 压缩指标 • Compress a ...

  5. 霍夫曼编码(Huffman Coding)

    霍夫曼编码(Huffman Coding)是一种编码方法,霍夫曼编码是可变字长编码(VLC)的一种. 霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符 ...

  6. 哈夫曼编码(Huffman coding)的那些事,(编码技术介绍和程序实现)

    前言 哈夫曼编码(Huffman coding)是一种可变长的前缀码.哈夫曼编码使用的算法是David A. Huffman还是在MIT的学生时提出的,并且在1952年发表了名为<A Metho ...

  7. <Sicily>Huffman coding

    一.题目描述 In computer science and information theory, a Huffman code is an optimal prefix code algorith ...

  8. 哈夫曼编码的理解(Huffman Coding)

    哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,可变字长编码(VLC)的一种.Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最 ...

  9. Huffman coding & Huffman tree

    Huffman coding & Huffman tree Huffman coding 哈夫曼编码 / 最优二元前缀码 Huffman tree 哈夫曼树 / 最优二叉树 https://w ...

随机推荐

  1. 使用python -m pip install 和 pip install 安装包有什么区别?

    如果去看源码的话,你会发现 pip 作为执行文件的入口点是 pip._internal.main. 另一方面,pip 作为模块运行时入口是 _main.py,而该模块也只是调用 pip.interna ...

  2. 阿里云 Serverless 再升级,从体验上拉开差距

    差距都在细节上. Serverless 要成就云计算的下一个 10 年,不仅需要在技术上持续精进,也需要在产品体验上精耕细作. 近日,阿里云 Serverless 再度升级,发布了一系列围绕产品体验方 ...

  3. H5移动端适配方案-rem

    为什么移动端要适配: 由于移动设备的尺寸不一,所以移动端的页面要能够适应不同尺寸的设备,即页面的自适应,让页面在视觉上保持一致. rem:rem 是css3的一种相对单位,参考是根元素HMTL的fon ...

  4. python单例模式设计

    class MyTest(): my_obj = None def __new__(cls,*args,**kwargs): if not cls.my_obj: cls.my_obj =object ...

  5. 2020BUAA软工结伴项目作业

    2020BUAA软工结伴项目作业 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 结伴项目作业 我在这个课程的目标是 学 ...

  6. CSP2021 翻车记

    DAY - INF 日常模拟赛被吊打,不知道为啥总是出一些小问题导致正解gg,成绩的话也就是中游吧,不过方差不小 DAY - 2 感冒了,头疼得很,签到题甚至也签到失败了,烦得很 DAY -1 全真体 ...

  7. stm32学习笔记之GPIO功能框图分析

    GPIO 是通用输入输出端口的简称,简单来说就是STM32 可控制的引脚,STM32 芯片的GPIO 引脚与外部设备连接起来,从而实现与外部通讯.控制以及数据采集的功能.STM32 芯片的GPIO被分 ...

  8. Python课程笔记(十一)

    一.线程与多线程 1.线程与进程 线程指的是 进程(运行中的程序)中单一顺序的执行流. 多个独立执行的线程相加 = 一个进程 多线程程序是指一个程序中包含有多个执行流,多线程是实现并发机制的一种有效手 ...

  9. 对SQLServer错误使用聚集索引的优化案例(千万级数据量)

    前言: 半个月前发了文章 SQLServer聚集索引导致的插入性能低 终于等到生产环境休整半天,这篇文章是对前文的实际操作. 以下正文开始: 异常:近期发现偶尔有新数据插入超时. 分析:插入条码有多种 ...

  10. JAVA笔记2__类/封闭性/构造方法/方法的重载/匿名对象

    public class Main { public static void main(String[] args) { Chicken c1 = new Chicken(); Chicken c2 ...