虽然是个板子,但用到了差分思想。

Description

N个点,形成一个树状结构。有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品。完成所有发放后,每个点存放最多的是哪种物品。

Solution

离线记录所有操作后把物品编号离散化,

之后修改路径信息时用到了点差分的思想。在线段树中记录差分数据,最后由叶节点开始合并,通过子树求和算出该点实际数据。

每次更改时只在两端点处加1,在lca处减1,再在lca父亲处减1即可。应该很好理解。

另外,应用边差分时,要现将边权化为点权,之后在两端点处加,在lca处减,无需更改lca父亲。(虽然这题没用到

具体看代码实现:

  1 #include<bits/stdc++.h>
2 #define debug cout<<"wrong"<<endl
3 using namespace std;
4 const int NN=1e5+5;
5 int n,m,to[NN<<1],nex[NN<<1],head[NN],num,x[NN],y[NN],z[NN],ans[NN];
6 int dep[NN],f[NN][60],tmp[NN],ext,logg,rt[NN];
7 inline int read(){
8 int x=0,f=1;
9 char ch=getchar();
10 while(ch<'0'||ch>'9'){
11 if(ch=='-') f=-1;
12 ch=getchar();
13 }
14 while(ch>='0'&&ch<='9'){
15 x=(x<<1)+(x<<3)+(ch^48);
16 ch=getchar();
17 }
18 return x*f;
19 }
20 inline void add(int a,int b){
21 to[++num]=b; nex[num]=head[a]; head[a]=num;
22 to[++num]=a; nex[num]=head[b]; head[b]=num;
23 }
24 inline int lca(int a,int b){
25 if(dep[a]>dep[b]) swap(a,b);
26 for(int i=logg;i>=0;i--)
27 if(dep[f[b][i]]>=dep[a]) b=f[b][i];
28 if(a==b) return a;
29 for(int i=logg;i>=0;i--)
30 if(f[a][i]!=f[b][i]) a=f[a][i], b=f[b][i];
31 return f[a][0];
32 }
33 void write(int x){
34 if(x<0) putchar('-'), x=-x;
35 if(x>9) write(x/10);
36 putchar(x%10+'0');
37 }
38 void init(){
39 n=read(); m=read();
40 for(int i=1;i<n;i++) add(read(),read());
41 for(int i=1;i<=m;i++) x[i]=read(), y[i]=read(), tmp[i]=z[i]=read();
42
43 sort(tmp+1,tmp+1+m);
44 ext=unique(tmp+1,tmp+1+m)-tmp-1;
45 for(int i=1;i<=m;i++) z[i]=lower_bound(tmp+1,tmp+ext+1,z[i])-tmp;
46
47 queue<int> q;
48 dep[1]=1; logg=log2(n)+1; q.push(1);
49 while(!q.empty()){
50 int a=q.front(); q.pop();
51 for(int i=head[a];i;i=nex[i]){
52 int b=to[i];
53 if(dep[b]) continue;
54 dep[b]=dep[a]+1; f[b][0]=a;
55 for(int j=1;j<=logg;j++) f[b][j]=f[f[b][j-1]][j-1];
56 q.push(b);
57 }
58 }
59 }
60 struct node{
61 int seg,ls[NN*60],rs[NN*60],typ[NN*60],sum[NN*60];
62 void pushup(int x){
63 if(sum[ls[x]]>=sum[rs[x]]) sum[x]=sum[ls[x]], typ[x]=typ[ls[x]];
64 else sum[x]=sum[rs[x]], typ[x]=typ[rs[x]];
65 }
66 void insert(int &x,int l,int r,int pos,int v){
67 if(!x) x=++seg;
68 if(l==r){
69 typ[x]=pos;
70 sum[x]+=v;
71 return;
72 }
73 int mid=(l+r)>>1;
74 if(pos<=mid) insert(ls[x],l,mid,pos,v);
75 else insert(rs[x],mid+1,r,pos,v);
76 pushup(x);
77 }
78 void marge(int &x,int y,int l,int r){
79 if(!x||!y){ x=x+y; return; }
80 if(l==r){ sum[x]+=sum[y]; typ[x]=l; return; }
81 int mid=(l+r)>>1;
82 marge(ls[x],ls[y],l,mid);
83 marge(rs[x],rs[y],mid+1,r);
84 pushup(x);
85 }
86 }segt;
87 void dfs(int fa,int st){
88 for(int i=head[st];i;i=nex[i]){
89 int t=to[i];
90 if(t==fa) continue;
91 dfs(st,t);
92 segt.marge(rt[st],rt[t],1,ext);
93 }
94 if(segt.sum[rt[st]]) ans[st]=tmp[segt.typ[rt[st]]];
95 }
96 int main(){
97 init();
98 for(int i=1;i<=m;i++){
99 int ca=lca(x[i],y[i]);
100 segt.insert(rt[x[i]],1,ext,z[i],1);
101 segt.insert(rt[y[i]],1,ext,z[i],1);
102 segt.insert(rt[ca],1,ext,z[i],-1);
103 if(f[ca][0]) segt.insert(rt[f[ca][0]],1,ext,z[i],-1);
104 }
105 dfs(0,1);
106 for(int i=1;i<=n;i++)
107 write(ans[i]), putchar('\n');
108 return 0;
109 }

[BZOJ3307] 雨天的尾巴-----------------线段树进阶的更多相关文章

  1. BZOJ3307雨天的尾巴——线段树合并

    题目描述 N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入 第一行数字N,M接下来N ...

  2. 【BZOJ3307】雨天的尾巴 线段树合并

    [BZOJ3307]雨天的尾巴 Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多 ...

  3. [Vani有约会]雨天的尾巴 线段树合并

    [Vani有约会]雨天的尾巴 LG传送门 线段树合并入门好题. 先别急着上线段树合并,考虑一下这题的暴力.一看就是树上差分,对于每一个节点统计每种救济粮的数量,再一遍dfs把差分的结果统计成答案.如果 ...

  4. 洛谷P4556 雨天的尾巴 线段树

    正解:线段树合并 解题报告: 传送门! 考虑对树上的每个节点开一棵权值线段树,动态开点,记录一个max(num,id)(这儿的id,define了一下,,,指的是从小到大排QAQ 然后修改操作可以考虑 ...

  5. bzoj 3307: 雨天的尾巴 线段树合并

    题目大意: N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.问完成所有发放后,每个点存放最多的是哪种物品. 题解: 首先我们为每一个节 ...

  6. P4556 雨天的尾巴 线段树合并

    使用线段树合并,每个节点维护一棵权值线段树,下标为救济粮种类,区间维护数量最多的救济粮编号(下标).所以每个节点答案即为\(tre[rot[x]]\). 然后运用树上点的差分思想,对于分发路径\(u, ...

  7. 洛谷P4556 [Vani有约会]雨天的尾巴(线段树合并)

    题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连根拔起,以及田地 ...

  8. [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)

    [BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...

  9. BZOJ4919[Lydsy1706月赛]大根堆-------------线段树进阶

    是不是每做道线段树进阶都要写个题解..根本不会写 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...

随机推荐

  1. SpingBoot-Dubbo-Zookeeper-分布式

    目录 分布式理论 什么是分布式系统? Dubbo文档 单一应用架构 垂直应用架构 分布式服务架构 流动计算架构 什么是RPC RPC基本原理 测试环境搭建 Dubbo Dubbo环境搭建 Window ...

  2. .NET 6 RC1 正式发布

    昨天晚上微软发布了.NET 6的两个RC版本中的第一个版本,该版本将于11月正式发布,作为在开源MIT协议下整合所有不同的.NET开发模组件的开源跨平台实现.这是一个从2014年开始,持续多年的,以改 ...

  3. python刷题第二周

    1: 第3章-5 字符转换 (15 分) 本题要求提取一个字符串中的所有数字字符('0'--'9'),将其转换为一个整数输出. 输入格式: 输入在一行中给出一个不超过80个字符且以回车结束的字符串. ...

  4. Fiddler抓包(以谷歌浏览器、安卓手机为例)

    fiddler抓包流程与whistle相同,所以本章内容会相对简洁.如果需要详细说明,可参考whistle抓包. 这里以谷歌浏览器.安卓手机为例. 1.fiddler安装 下载安装包,默认安装. 2. ...

  5. 『GoLang』包

    可见性规则 在Go语言中,标识符必须以一个大写字母开头,这样才可以被外部包的代码所使用,这被称为导出.标识符如果以小写字母开头,则对包外是不可见的,但是他们在整个包的内部是可见并且可用的.但是包名不管 ...

  6. Nginx禁止ip方式访问80、443端口

    在nginx.conf配置文件中 include /etc/nginx/conf.d/*.conf; 之前加入以下内容 server { listen 80 default; listen 443 d ...

  7. CF235D-Graph Game【LCA,数学期望】

    正题 题目链接:https://www.luogu.com.cn/problem/CF235D 题目大意 给出一棵基环树,每次随机选择一个点让权值加上这个点的连通块大小然后删掉这个点. 求删光所有点时 ...

  8. P5325-[模板]Min_25筛

    正题 题目链接:https://www.luogu.com.cn/problem/P5325 题目大意 定义一个积性函数满足\(f(p^k)=p^k(p^k-1)\) 求\(\sum_{i=1}^nf ...

  9. vue-混入( mixin 更方便的组件功能复用方法)的使用

    前言 vue 中组件完成了样式和功能的综合复用,通过自定义指令完成了一部分功能的复用,本文总结一下混入在vue项目开发中提供的非常便利的功能复用. 正文 1.混入的分类 (1)全局混入 <div ...

  10. UVa/数组与字符串习题集

    UVa-272. Description: TEX is a typesetting language developed by Donald Knuth. It takes source text ...