论文链接:https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Q1:解决了什么?

  1. 目前主要利用机器学习来解决目标识别任务;

    机器学习可以通过“扩充数据集”、“强化训练模型”、“充实预防过拟合的手段”等多种技巧去提高训练性能。

  2. 之前机器学习所使用的数据集太小,只能完成简单的识别任务,但是实际场景中识别任务要复杂得多,因此需要更加大型的数据集去训练;

  3. 直到最近出现了符合条件的大型数据集(如LabelMe、ImageNet),但是之前的方法都是针对小型数据集的,因此需要更加强大的方法模型来训练大型数据集;

    于是,CNN模型闪亮登场!

  4. 本文提出的AlexNet模型,正是对传统CNN进行改善来训练大型数据集ImageNet,实现将 ImageNet LSVRC-2010 竞赛中的120万张高分辨率图像分为1000个不同的类别,使得深度学习开始在各个领域大显身手,为后续优秀的网络的提出奠定基础(后面的ImageNet冠军都是用CNN来做的)。

Q2:怎么解决的?

1、网络结构

  1. 5层卷积层+3层全连接层:

    • 第2、4、5层卷积层中的内核仅连接到前一层中位于同于同一GPU上的特征图;
    • 第3层卷积层中的内核与前一层中所有的特征图相连接。
  2. 各卷积层的完整操作:
    • 第1层、第2层卷积层的完整操作:Conv→LRN→MaxPooling→ReLU;
    • 第3层、第4层卷积层的完整操作:Conv→ReLU;
    • 第5层卷积层的完整操作:Conv→MaxPooling→ReLU。

2、创新点

1)非饱和激活函数

使用了非饱和激活函数ReLU,有效防止了梯度消失。

关于非饱和激活函数的解释:https://blog.csdn.net/qq_40824311/article/details/103017760

2)多个GPU并行训练

采用了2块GPU进行训练,每个GPU负责一半的神经元,2个GPU只在第3层卷积层进行通信。有效降低了top-1 error和top-5 error。

3)LRN(局部响应标准化)

采用了LRN(局部相应标准化),使AlexNet的top-1和top-5错误率分别降低了1.4%和1.2%;


局部响应标准化:有助于提升AlexNet的泛化能力,这种方法受真实神经侧抑制(later inhibition)的启发。

侧抑制:一个细胞分化为不同细胞时,它会对周围的细胞产生抑制信号,组织它们向相同方向分化,最终表现为细胞分化命运的不同。

LRN对局部神经元的活动创建竞争机制,使得响应较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。

LRN公式:$b_{x,y}{i}={a_{x,y}{i}}/{(k+\alpha\sum_{j=max(0,i-n/2)}{min(N-1,i+n/2)}(a_{x,y}{j}){2}){\beta}} $

注:\(a_{x,y}^{i}\)表示第i个通道第x行,第y列对应像素的具体值

4)带重叠的池化

采用了“带重叠的池化(overlapping pooling)”(即令池化步长<池化窗口边长),不易产生过拟合。

5)数据集增强

利用“图片平移&水平翻转”和“改变RGB色差”,实现数据集增强。

6)引入“Dropout失活”

利用dropout(失活率=0.5),有效预防了过拟合。

Dropout介绍:https://www.jianshu.com/p/21d4c64fb8b5

AlexNet论文总结的更多相关文章

  1. < AlexNet - 论文研读个人笔记 >

    Alexnet - 论文研读个人笔记 一.论文架构 摘要: 简要说明了获得成绩.网络架构.技巧特点 1.introduction 领域方向概述 前人模型成绩 本文具体贡献 2.The Dataset ...

  2. 【分类】AlexNet论文总结

    目录 0. 论文链接 1. 概述 2. 对数据集的处理 3. 网络模型 3.1 ReLU Nonlinearity 3.2 Training on multiple GPUs 3.3 Local Re ...

  3. AlexNet—论文分析及复现

    AlexNet卷积神经网络是由Alex Krizhevsky等人在2012年的ImagNet图像识别大赛获得冠军的一个卷积神经网络,该网络放到现在相对简单,但也是深度学习不错的卷积神经网络.论文:&l ...

  4. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  5. 【深度学习 论文篇 01-1 】AlexNet论文翻译

    前言:本文是我对照原论文逐字逐句翻译而来,英文水平有限,不影响阅读即可.翻译论文的确能很大程度加深我们对文章的理解,但太过耗时,不建议采用.我翻译的另一个目的就是想重拾英文,所以就硬着头皮啃了.本文只 ...

  6. tensorflow学习笔记——AlexNet

    1,AlexNet网络的创新点 AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下: (1)成功使用ReLU作为CNN的激活函 ...

  7. 从AlexNet(2012)开始

    目录 写在前面 网络结构 创新点 其他有意思的点 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 本文重点在于回顾深度神经网络在CV领域的First Blood--A ...

  8. 四大网络之Alexnet

       本文主要介绍AlextNet的一些知识,这些知识经常被忽略 一.AlextNet的创新点 (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Si ...

  9. 深入理解AlexNet网络

    原文地址:https://blog.csdn.net/luoluonuoyasuolong/article/details/81750190 AlexNet论文:<ImageNet Classi ...

随机推荐

  1. Jmeter之cokie管理器和http默认值

    根据上文中,都配置好以后就可以开始启动了,点击启动,线程组里面就会开始记录你的网页请求.这里使用CNode网站做测试.我分别记录进行了"登入","话题创建",& ...

  2. Maven | 把jar包安装到本地仓库

    使用的场景 自己写的工具类想安装到本地 从Maven仓库中下载不下来的jar 使用的步骤 首先要保证自己的Maven配置全局环境变量,如果没有配置过maven全局变量,可以按照下面的步骤配置一下: 先 ...

  3. 题解 guP2421 【[NOI2002]荒岛野人】

    本题珂以转换成一个式子 即求Ci + Pi × x ≡ Cj + Pj × x (mod M) 的最小答案是否大于寿命最小值 以人数为最小值开始枚举山洞数,用扩展欧几里得计算最优答案是否大于寿命 若不 ...

  4. 整理最近用的Mongo查询语句

    背景 最近做了几个规则逻辑.用到mongo查询比较多,就是查询交易信息跑既定规则筛选出交易商户,使用聚合管道进行统计和取出简单处理后的数据,用SQL代替业务代码逻辑的判断. 方法 MongoDB聚合使 ...

  5. POJ3179 Corral the Cows题解

    我就是个垃圾--一道水题能写这么长时间-- 首先看到题就想到了二维前缀和+二分边长,但地图边长10000,得离散化. 于是这个离散化就把我搞疯了,淦. 这反映出现在基础知识还是不牢固,相当不牢固. 复 ...

  6. HttpClient(七)

    一.定义 1.什么是HttpClient?在什么场景要用到HttpClient? http协议可以说是现在Internet上面最重要,使用最多的协议之一了,越来越多的java应用需要使用http协议来 ...

  7. 第十九篇 -- QTableWidget的使用

    QTableWidget的一些常用方法 下面两个类可以根据自己的情况自定义. 单元格类型的类: class CellType(Enum): ctKey = 1000 ctPath = 1001 ctI ...

  8. 第十一篇 -- 如何实现MFC窗口的最大化以及控件随最大化

    这一篇介绍的是怎么实现MFC窗口的最大最小化,以及里面控件大小也随之改变 第一步:实现窗口最大最小化 首先右击窗口空白处,打开properties,将里面的MaximizeBox和MinimizeBo ...

  9. 百度nlp api接口测试

    date:2021/7/8 使用postman测试 网址:https://ai.baidu.com/ 在百度AI首页-开放能力-自然语言处理-语言处理基础技术 点击技术文档 在左侧文档目录选择API参 ...

  10. Verilog function的使用

    function的用法 function的标准写法如下: function  <返回值的类型或是范围>  (函数名): <端口说明语句> //input xxx <变量类 ...