在了解什么是迭代器和生成器之前,我们先来了解一下容器的概念。对于一切皆对象来说,容器就是对象的集合。例如列表、元祖、字典等等都是容器。对于容器,你可以很直观地想象成多个元素在一起的单元;而不同容器的区别,正是在于内部数据结构的实现方法。然后,你就可以针对不同场景,选择不同时间和空间复杂度的容器。

所有的容器都是可迭代的。而迭代器就是可以用来遍历容器中元素的。迭代器(iterator)提供了一个 next 的方法。调用这个方法后,你要么得到这个容器的下一个对象,要么得到一个 StopIteration 的错误。你不需要像列表一样指定元素的索引,因为字典和集合这样的容器并没有索引一说。

对于可迭代的对象,我们可以通过iter() 函数返回一个迭代器,然后在通过next()函数可以实现遍历。我们来看下面这段代码来理解一下。

s = set([1,2,3,4,5])
it = iter(s)
print(it.__next__())
print(it.__next__())
print(it.__next__())

  

它的输出为1,2,3, 就是一个一个的输出集合中的元素。

那什么是生成器呢?我们知道,在迭代器中,如果我们想要枚举它的元素,这些元素需要事先生成。这里,我们先来看下面这个简单的样例。

# 显示当前 python 程序占用的内存大小
def show_memory(temp):
pid = os.getpid()
p = psutil.Process(pid)
info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(temp, memory)) def iterator():
show_memory('initing iterator')
list_1 = [i for i in range(10000)]
show_memory('after iterator initiated')
print(sum(list_1))
show_memory('after sum called') def generator():
show_memory('initing generator')
list_2 = (i for i in range(10000))
show_memory('after generator initiated')
print(sum(list_2))
show_memory('after sum called') iterator()
generator() 输出:
initing iterator memory used: 5.58984375 MB
after iterator initiated memory used: 6.0234375 MB
49995000
after sum called memory used: 6.0234375 MB
initing generator memory used: 6.0234375 MB
after generator initiated memory used: 6.0234375 MB
49995000
after sum called memory used: 6.0234375 MB

  

在 iterator(),通过 [i for i in range(10000)] 就可以生成一个包含一万个元素的列表。每个元素在生成后都会保存到内存中,你通过代码可以看到,它们占用了巨量的内存,内存不够的话就会出现 OOM 错误。不过,我们并不需要在内存中同时保存这么多东西,比如对元素求和,我们只需要知道每个元素在相加的那一刻是多少就行了,用完就可以扔掉了。于是,生成器的概念应运而生,在你调用 next() 函数的时候,才会生成下一个变量。生成器在 Python 的写法是用小括号括起来,(i for i in range(10000)),即初始化了一个生成器。这样一来,你可以清晰地看到,生成器并不会像迭代器一样占用大量内存,只有在被使用的时候才会调用。而且生成器在初始化的时候,并不需要运行一次生成操作,相比于 iterator , generator()函数节省了一次生成一万个元素的过程。因此不需要占用大量内存。

好的,了解了什么是生成器和迭代器之后,我们看下面这么一个例子:

给定一个 list 和一个指定数字,求这个数字在 list 中的位置。下面这段代码你应该不陌生,也就是常规做法,枚举每个元素和它的 index,判断后加入 result,最后返回。

def index(list1, target):
result = []
for i, num in enumerate(list1):
if num == target:
result.append(i)
return result print(index([2, 3, 6,7,9,0,2,6], 6)) 输出:[2, 7]

   那么使用迭代器可以怎么做呢? 如下所示:

def index(list1, target):
for i, num in enumerate(list1):
if num == target:
yield i print(list(index([2, 3, 6,7,9,0,2,6], 6))) 输出:[2, 7]

  

上面index函数返回的是一个生成器对象,需要转换成list后再print输出。

下面我们来总结一下:1.容器是可迭代对象,可迭代对象调用 iter() 函数,可以得到一个迭代器。迭代器可以通过 next() 函数来得到下一个元素,从而支持遍历。

生成器是一种特殊的迭代器。使用生成器,你可以写出来更加清晰的代码;合理使用生成器,可以降低内存占用、提高程序速度。

有什么问题,欢迎留言和我讨论。

Python迭代器和生成器你学会了吗?的更多相关文章

  1. Python 迭代器和生成器(转)

    Python 迭代器和生成器 在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的, ...

  2. 一文搞懂Python迭代器和生成器

    很多童鞋搞不懂python迭代器和生成器到底是什么?它们之间又有什么样的关系? 这篇文章就是要用最简单的方式让你理解Python迭代器和生成器! 1.迭代器和迭代过程 维基百科解释道: 在Python ...

  3. Python - 迭代器与生成器 - 第十三天

    Python 迭代器与生成器 迭代器 迭代是Python最强大的功能之一,是访问集合元素的一种方式. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问 ...

  4. 怎么理解Python迭代器与生成器?

    怎么理解Python迭代器与生成器?在Python中,使用for ... in ... 可以对list.tuple.set和dict数据类型进行迭代,可以把所有数据都过滤出来.如下:         ...

  5. Python迭代器,生成器--精华中的精华

    1. 迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大 ...

  6. python迭代器与生成器详解

    迭代器与生成器 迭代器(iterator)与生成器(generator)是 Python 中比较常用又很容易混淆的两个概念,今天就把它们梳理一遍,并举一些常用的例子. for 语句与可迭代对象(ite ...

  7. Python—迭代器与生成器

    迭代器与生成器 生成器(generator) 先来了解一下列表生成器: list = [i*2 for i in range(10)] print(list)>>>>[0, 2 ...

  8. python -迭代器与生成器 以及 iterable(可迭代对象)、yield语句

    我刚开始学习编程没多久,对于很多知识还完全不知道,而有些知道的也是一知半解,我想把学习到的知识记录下来,一是弥补记忆力差的毛病,二也是为了待以后知识能进一步理解透彻时再回来做一个补充. 参考链接: 完 ...

  9. python迭代器,生成器

    1. 迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大 ...

随机推荐

  1. crontab简单使用手册

    Linux定时任务(1)- crontab 枫林风雨关注 0.1682018.12.14 12:29:47字数 946阅读 921 执行定时任务 crontab 执行循环任务 at 执行一次性任务 c ...

  2. Linux服务之Apache服务篇

    apache httpd:提供http服务 http超文本协议 HTML超文本标记语言 URL(Uniform Resource Locator)统一资源定位符 http://www.sina.com ...

  3. S7 Linux用户管理及用户信息查询命令

    7.1 useradd:创建用户 7.2-5 usermod 7.6 passwd:修改用户密码 7.7-9 chage.chpasswd.su 7.10-11 visudo.sudo 7.12-7. ...

  4. MyBatis 高级查询之多对多查询(十一)

    高级查询之多对多查询 查询条件:根据玩家名,查询游戏信息 我们在之前创建的映射器接口 GameMapper.java 中添加接口方法,如下: /** * 根据玩家名查询游戏 * @param name ...

  5. 原生基础js脚本实现--在线答题系统

    全部代码在最下面----需要的直接往下翻 html方面的代码  : 正确的答案 value=s <!DOCTYPE html> <html lang="en"&g ...

  6. 离散傅里叶变换的衍生,负频率、fftshift、实信号、共轭对称

    封面是福州的福道,从高处往下看福道上的人在转圈圈.从傅里叶变换后的频域角度来看,我们的生活也是一直在转圈圈,转圈圈也是好事,说明生活有规律,而我们应该思考的是,如何更有效率地转圈圈--哦别误会,我真不 ...

  7. Python函数装饰器高级用法

    在了解了Python函数装饰器基础知识和闭包之后,开始正式学习函数装饰器. 典型的函数装饰器 以下示例定义了一个装饰器,输出函数的运行时间: 函数装饰器和闭包紧密结合,入参func代表被装饰函数,通过 ...

  8. 对狂神说的MybatisPlus的学习总结

    1.什么是MybatisPlus? 需要的基础:spring,spring mvc,mybatis 作用:可以节省大量的工作时间,所有的CRUD代码都可以自动完成,简化Mybatis MyBatis- ...

  9. java中存储mysql数据库时间类型【date、time、datetime、timestamp】

    在MySQL中对于时间的存储自己见表的时候都是设置的varchar类型的,感觉挺方便的. 昨天拿别人建好的表写代码,发现这张表中时间类型为datetime的,凭感觉试了一下不行,网上查了刚开始试了好几 ...

  10. AI人工智能天机芯芯片

    AI人工智能天机芯芯片 描述 2019年刊出的<自然>封面文章,展示了清华大学类脑计算研究中心团队研发的新型人工智能芯片"天机芯(Tianjic)".这是世界首款异构融 ...