洛谷2619/bzoj2654 Tree(凸优化+MST)
bzoj的数据是真的水。。
qwq
由于本人还有很多东西不是很理解
qwq
所以这里只写一个正确的做法。
首先,我们会发现,对于你选择白色边的数目,随着数目的上涨,斜率是单调升高的。
那么这时候我们就可以考虑凸优化,也就是\(wqs\)二分来满足题目中所述的正好\(k\)条边的限制。
我们\(erf\)一个\(mid\),然后让每一个白边的权值都加上\(mid\),然后跑\(MST\),看最后的选的白色边数,是否是大于等于\(k\)的,如果是,就调大\(l\),否则调小\(r\)。
由于最小生成树选择边的时候可能有一些玄学的错误,所以我们在\(sort\)的时候,对于权值相等的边,我们优先选择白边。
那么通过\(erf\),之后,我们就能得到一个上界,也就是在当前的偏移量下,我们最多的选和1相连的边的个数。
根据\(clj\)的官方题解,这里有两个引理
对于一个图,如果存在一个最小生成树,它的白边的数量是\(x\),那么就称\(x\)是最小合法白边数。所有的最小合法白边数形成一个区间\([l,r]\)
(因为题目保证有解,所以我们只需要找到最小的\(r\)即可)
那么经过这个\(erf\),我们就能得到一个最小的\(r\)
那么我们应该怎么求整个\(MST\)的权值呢,我们会发现,对于权值相等的白边和黑边,由于题目保证有解,所以一定是会存在相互替代的关系的。
那我们可以按照之前的最小生成树的策略选白边,将其记为\(val\),最后输出\(val-k*ans\),\(ans\)表示最后的\(mid\)。
为什么是\(k\)而不是具体的选的边的数目呢?
因为题目要求正好选择\(k\)条,而我们这里实际上是把多余的白边都直接视为黑边来做了
qwqwq
那么这个题就能解决了
qwqwqwqwq
但是我根据CF125E那个题,有一个比较特殊的做法,但是套到这个这个题,我并不是很理解。qwq
这个坑还是之后再填吧
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<map>
#include<vector>
#define mk make_pair
#define pb push_back
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 4e5+1e2;
struct Edge{
int u,v,w;
int col;
};
Edge e[maxn];
int n,m;
int ans;
int l=-200,r=200;
int fa[maxn];
int find(int x)
{
if (fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
int k;
bool cmp(Edge a,Edge b)
{
if (a.w==b.w) return a.col<b.col;
return a.w<b.w;
}
int solve()
{
sort(e+1,e+1+m,cmp);
int tot=0;
for (int i=1;i<=m;i++)
{
int f1 = find(e[i].u);
int f2 = find(e[i].v);
if (f1==f2) continue;
//if(tot==k && e[i].col==0) continue;
if (e[i].col==0) ++tot;
fa[f1]=fa[f2];
}
return tot;
}
signed main()
{
n=read(),m=read();k=read();
for (int i=1;i<=m;i++)
{
e[i].u=read()+1;
e[i].v=read()+1;
e[i].w=read();
e[i].col=read();
}
while(l<=r)
{
int mid = (l+r) >> 1;
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=1;i<=m;i++)
{
if (e[i].col==0) e[i].w+=mid;
}
int tmp = solve();
if (tmp<k)
{
r=mid-1;
}
else l=mid+1,ans=mid;
for (int i=1;i<=m;i++)
{
if (e[i].col==0) e[i].w-=mid;
}
}
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=1;i<=m;i++)
if (e[i].col==0) e[i].w+=ans;
sort(e+1,e+1+m,cmp);
int tot=0,val=0;
for (int i=1;i<=m;i++)
{
int f1 = find(e[i].u);
int f2 = find(e[i].v);
if (f1==f2) continue;
if (e[i].col==0) ++tot;
fa[f1]=fa[f2];
val+=e[i].w;
}
cout<<val-k*ans;
return 0;
}
洛谷2619/bzoj2654 Tree(凸优化+MST)的更多相关文章
- BZOJ2654 & 洛谷2619:tree——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2654 https://www.luogu.org/problemnew/show/P2619 给你 ...
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- CF125E MST company (凸优化+MST)
qwq自闭的一个题 我来修锅辣!!!!!! 这篇题解!可以\(hack\)全网大部分的做法!!! 首先,我们可以把原图中的边,分成两类,一类是与\(1\)相连,另一类是不与\(1\)相连. 原题就转化 ...
- 洛谷 P5853 - [USACO19DEC]Tree Depth P(生成函数+背包)
洛谷题面传送门 神仙题. 首先考虑一个点的深度是什么,注意到对于笛卡尔树而言直接从序列的角度计算一个点的深度是不容易的,因为这样会牵扯到序列中多个元素,需要 fixed 的东西太多,计算起来太复杂了. ...
- 洛谷.2619.[国家集训队2]Tree I(带权二分 Kruskal)
题目链接 \(Description\) 给定一个无向带权连通图,每条边是黑色或白色.求一棵最小权的恰好有K条白边的生成树. \(Solution\) Kruskal是选取最小的n-1条边.而白边数有 ...
- [BZOJ2654]tree(二分+MST)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2654 分析:此题很奇葩,我们可以给所有白边加上一个权值mid,那么在求得的MST中白边 ...
- [bzoj4443] [loj#2006] [洛谷P4251] [Scoi2015]小凸玩矩阵
Description 小凸和小方是好朋友,小方给小凸一个 \(N \times M\)( \(N \leq M\) )的矩阵 \(A\) ,要求小秃从其中选出 \(N\) 个数,其中任意两个数字不能 ...
- 洛谷 P3994 高速公路(斜率优化)
题目链接 题意:给出一棵树,\(1\) 号点为根,边上有边权. 每个点有两个参数 \(p_i,q_i\) 如果你想从 \(i\) 号点到与其距离为 \(d\) 的 \(j\) 号点,那么你需花费 \( ...
- 洛谷P4250 [SCOI2015]小凸想跑步(半平面交)
题面 传送门 题解 设\(p\)点坐标为\(x_p,y_p\),那么根据叉积可以算出它与\((i,i+1)\)构成的三角形的面积 为了保证\(p\)与\((0,1)\)构成的面积最小,就相当于它比其它 ...
随机推荐
- 并发编程之:ThreadLocal
大家好,我是小黑,一个在互联网苟且偷生的农民工. 从前上一期[并发编程之:synchronized] 我们学到要保证在并发情况下对于共享资源的安全访问,就需要用到锁. 但是,加锁通常情况下会让运行效率 ...
- redis>lua脚本
String lua="local num=redis.call('incr',KEYS[1])\n"+"if tonumber(num)==1 then\n" ...
- 用C++实现的Euler筛法程序
Euler筛法介绍 以筛出100以内(含100)的所有素数为例来说明一下欧拉筛法的原理. 和Eratosthenes筛法一样,Euler筛法也从2开始筛,但Eratosthenes筛法会把2的倍数一批 ...
- elsa core—3.elsa 服务
在本快速入门中,我们将介绍一个用于设置Elsa Server的最小ASP.NET Core应用程序.我们还将安装一些更常用的activities(活动),如Timer.Cron和sendmail,以能 ...
- GetX代码生成IDEA插件,超详细功能讲解(透过现象看本质)
前言 本文章不是写getx框架的使用,而且其代码生成IDEA插件的功能讲解 我之前写过俩篇很长很长的getx文章 一篇入门使用:Flutter GetX使用---简洁的魅力! 一篇原理深度剖析:Flu ...
- noip模拟29
这次终于是早上考试了 早上考试手感不错,这次刷新了以前的最高排名- %%%cyh巨佬 \(rk1\) %%%CT巨佬 \(t2\) 90 纵观前几,似乎我 \(t3\) 是最低的-- 总计挂分10分, ...
- Hamcrest 断言框架
Hamcrest是一个为了测试为目的,能组合成灵活表达式的匹配器类库.用于编断言的框架,使用这个框架编写断言,提高可读性及开发测试的效率,提供了大量"匹配器"方法,每个匹配器用于执 ...
- SQL:1999基本语法
SQL:1999基本语法 SELECT [DISTINCT] * | 列名称 [AS]别名,........ FROM 表名称1 [别名1][CROSS JOIN表名称2 别名2]| [NATURAL ...
- Windows难民安装docker的注意事项
Windows下如何安装docker,这个没啥可说的,一直下一步就ok Windows docker 下载地址: https://download.docker.com/win/stable/Doc ...
- python面向对象(封装,继承,多态)
python面向对象(封装,继承,多态) 学习完本篇,你将会深入掌握 如何封装一个优雅的借口 python是如何实现继承 python的多态 封装 含义: 1.把对象的属性和方法结合成一个独立的单位, ...