洛谷2619/bzoj2654 Tree(凸优化+MST)
bzoj的数据是真的水。。
qwq
由于本人还有很多东西不是很理解
qwq
所以这里只写一个正确的做法。
首先,我们会发现,对于你选择白色边的数目,随着数目的上涨,斜率是单调升高的。
那么这时候我们就可以考虑凸优化,也就是\(wqs\)二分来满足题目中所述的正好\(k\)条边的限制。
我们\(erf\)一个\(mid\),然后让每一个白边的权值都加上\(mid\),然后跑\(MST\),看最后的选的白色边数,是否是大于等于\(k\)的,如果是,就调大\(l\),否则调小\(r\)。
由于最小生成树选择边的时候可能有一些玄学的错误,所以我们在\(sort\)的时候,对于权值相等的边,我们优先选择白边。
那么通过\(erf\),之后,我们就能得到一个上界,也就是在当前的偏移量下,我们最多的选和1相连的边的个数。
根据\(clj\)的官方题解,这里有两个引理
对于一个图,如果存在一个最小生成树,它的白边的数量是\(x\),那么就称\(x\)是最小合法白边数。所有的最小合法白边数形成一个区间\([l,r]\)
(因为题目保证有解,所以我们只需要找到最小的\(r\)即可)
那么经过这个\(erf\),我们就能得到一个最小的\(r\)
那么我们应该怎么求整个\(MST\)的权值呢,我们会发现,对于权值相等的白边和黑边,由于题目保证有解,所以一定是会存在相互替代的关系的。
那我们可以按照之前的最小生成树的策略选白边,将其记为\(val\),最后输出\(val-k*ans\),\(ans\)表示最后的\(mid\)。
为什么是\(k\)而不是具体的选的边的数目呢?
因为题目要求正好选择\(k\)条,而我们这里实际上是把多余的白边都直接视为黑边来做了
qwqwq
那么这个题就能解决了
qwqwqwqwq
但是我根据CF125E那个题,有一个比较特殊的做法,但是套到这个这个题,我并不是很理解。qwq
这个坑还是之后再填吧
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<map>
#include<vector>
#define mk make_pair
#define pb push_back
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 4e5+1e2;
struct Edge{
int u,v,w;
int col;
};
Edge e[maxn];
int n,m;
int ans;
int l=-200,r=200;
int fa[maxn];
int find(int x)
{
if (fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
int k;
bool cmp(Edge a,Edge b)
{
if (a.w==b.w) return a.col<b.col;
return a.w<b.w;
}
int solve()
{
sort(e+1,e+1+m,cmp);
int tot=0;
for (int i=1;i<=m;i++)
{
int f1 = find(e[i].u);
int f2 = find(e[i].v);
if (f1==f2) continue;
//if(tot==k && e[i].col==0) continue;
if (e[i].col==0) ++tot;
fa[f1]=fa[f2];
}
return tot;
}
signed main()
{
n=read(),m=read();k=read();
for (int i=1;i<=m;i++)
{
e[i].u=read()+1;
e[i].v=read()+1;
e[i].w=read();
e[i].col=read();
}
while(l<=r)
{
int mid = (l+r) >> 1;
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=1;i<=m;i++)
{
if (e[i].col==0) e[i].w+=mid;
}
int tmp = solve();
if (tmp<k)
{
r=mid-1;
}
else l=mid+1,ans=mid;
for (int i=1;i<=m;i++)
{
if (e[i].col==0) e[i].w-=mid;
}
}
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=1;i<=m;i++)
if (e[i].col==0) e[i].w+=ans;
sort(e+1,e+1+m,cmp);
int tot=0,val=0;
for (int i=1;i<=m;i++)
{
int f1 = find(e[i].u);
int f2 = find(e[i].v);
if (f1==f2) continue;
if (e[i].col==0) ++tot;
fa[f1]=fa[f2];
val+=e[i].w;
}
cout<<val-k*ans;
return 0;
}
洛谷2619/bzoj2654 Tree(凸优化+MST)的更多相关文章
- BZOJ2654 & 洛谷2619:tree——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2654 https://www.luogu.org/problemnew/show/P2619 给你 ...
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- CF125E MST company (凸优化+MST)
qwq自闭的一个题 我来修锅辣!!!!!! 这篇题解!可以\(hack\)全网大部分的做法!!! 首先,我们可以把原图中的边,分成两类,一类是与\(1\)相连,另一类是不与\(1\)相连. 原题就转化 ...
- 洛谷 P5853 - [USACO19DEC]Tree Depth P(生成函数+背包)
洛谷题面传送门 神仙题. 首先考虑一个点的深度是什么,注意到对于笛卡尔树而言直接从序列的角度计算一个点的深度是不容易的,因为这样会牵扯到序列中多个元素,需要 fixed 的东西太多,计算起来太复杂了. ...
- 洛谷.2619.[国家集训队2]Tree I(带权二分 Kruskal)
题目链接 \(Description\) 给定一个无向带权连通图,每条边是黑色或白色.求一棵最小权的恰好有K条白边的生成树. \(Solution\) Kruskal是选取最小的n-1条边.而白边数有 ...
- [BZOJ2654]tree(二分+MST)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2654 分析:此题很奇葩,我们可以给所有白边加上一个权值mid,那么在求得的MST中白边 ...
- [bzoj4443] [loj#2006] [洛谷P4251] [Scoi2015]小凸玩矩阵
Description 小凸和小方是好朋友,小方给小凸一个 \(N \times M\)( \(N \leq M\) )的矩阵 \(A\) ,要求小秃从其中选出 \(N\) 个数,其中任意两个数字不能 ...
- 洛谷 P3994 高速公路(斜率优化)
题目链接 题意:给出一棵树,\(1\) 号点为根,边上有边权. 每个点有两个参数 \(p_i,q_i\) 如果你想从 \(i\) 号点到与其距离为 \(d\) 的 \(j\) 号点,那么你需花费 \( ...
- 洛谷P4250 [SCOI2015]小凸想跑步(半平面交)
题面 传送门 题解 设\(p\)点坐标为\(x_p,y_p\),那么根据叉积可以算出它与\((i,i+1)\)构成的三角形的面积 为了保证\(p\)与\((0,1)\)构成的面积最小,就相当于它比其它 ...
随机推荐
- 高德地图&兴趣点(poi)
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- 接口测试进阶接口脚本使用--apipost(预/后执行脚本)
预执行脚本的作用时间 预执行脚本是一个请求发送前执行的脚本. 预执行脚本的作用 预执行脚本可以完成以下作用: 编写JS函数等实现复杂计算: 变量的打印 定义.获取.删除.清空环境变量 定义.获取.删除 ...
- shell运算方式
1.(())--整数运算 [root@m01 /server/scripts]# a=1 [root@m01 /server/scripts]# b=2 [root@m01 /server/scrip ...
- MFGTool2 的使用
环境 宿主机平台:Ubuntu 16.04.6 目标机:iMX6ULL开发板 MFGTool 2.7 参考:https://www.cnblogs.com/helloworldtoyou/p/6053 ...
- MyBatis的Mapper代理笔记
MaBatis--Mapper代理 目前使用SqlSession进行增删改查的缺点: 没有办法实现多参传值 书写的时候没有接口,后期的维护低 使用Mapper的动态代理方式来解决问题 具体实现 首先我 ...
- IPv4掩码与掩码位数的转换
1. 根据掩码获取掩码的位数 int mask2len(unsigned int mask) { /*eg: 255.255.255.0 255.0.255.255.0*/ int bit=0,len ...
- npm 淘宝镜像与官方源 切换
1.临时使用 npm --registry https://registry.npm.taobao.org install 包名 2.永久设置为淘宝镜像 npm config set registry ...
- redis存取数据Hash
一.概念 二.存取散列Hash值 1. 2.JSON字符串存取,没有更新值的字段资源浪费 使用散列Hash存取,可以单独到一个或多个字段: 3.hsetnx,属性不存在就新增并赋值,属性已存在啥也不干 ...
- CentOS Linux 简单安装 clickhouse
本文只是仅仅的介绍安装 至于更多介绍请自信百度 1.本人 linux版本 [root@localhost /]# cat /etc/redhat-releaseCentOS Linux release ...
- linux centos系统 php安装GD库扩展
yum --enablerepo=remi-php56 install php-gd php-mysql php-mbstring php-xml php-mcrypt //安装GD库扩展 servi ...