Spatial Analyst Tools

1、区域分析

# Process: 以表格显示分区几何统计
arcpy.gp.ZonalGeometryAsTable_sa("", "", 输出表, "") # Process: 以表格显示分区统计
arcpy.gp.ZonalStatisticsAsTable_sa("", "", "", 输出表__2_, "DATA", "ALL") # Process: 分区几何统计
arcpy.gp.ZonalGeometry_sa("", "", 输出栅格, "AREA", "") # Process: 分区统计
arcpy.gp.ZonalStatistics_sa("", "", "", 输出栅格__2_, "MEAN", "DATA") # Process: 区域填充
arcpy.gp.ZonalFill_sa("", "", 输出栅格__3_) # Process: 区域直方图
arcpy.gp.ZonalHistogram_sa("", "", "", 输出表__3_, 输出图表名称) # Process: 面积制表
arcpy.gp.TabulateArea_sa("", "", "", "", 输出表__4_, "")

2、叠加分析

# Process: 加权叠加
arcpy.gp.WeightedOverlay_sa("", 输出栅格) # Process: 加权总和
arcpy.gp.WeightedSum_sa("", 输出栅格__2_) # Process: 查找区域
arcpy.gp.LocateRegions_sa("", 输出栅格__3_, "", "SQUARE_MAP_UNITS", "1", "CIRCLE", "0", "50", "HIGHEST_AVERAGE_VALUE", "", "", "", "", "MAP_UNITS", "", "EIGHT", "NO_ISLANDS", "AUTO", "AUTO", "AUTO") # Process: 模糊叠加
arcpy.gp.FuzzyOverlay_sa("", 输出栅格__4_, "AND", "0.9") # Process: 模糊隶属度
arcpy.gp.FuzzyMembership_sa("", 输出栅格__5_, "MSSMALL 1 1", "NONE")

3、地下水分析

# Process: 孔隙扩散
arcpy.gp.PorousPuff_sa("", "", "", 输出栅格, "", "", "", "3", "1", "0") # Process: 粒子追踪
arcpy.gp.ParticleTrack_sa("", "", "", 输出粒子追踪文件, "", "", 输出追踪折线要素) # Process: 达西流
arcpy.gp.DarcyFlow_sa("", "", "", "", 输出地下水水量平衡残差栅格数据, 输出方向栅格数据, 输出量级栅格数据) # Process: 达西速度
arcpy.gp.DarcyVelocity_sa("", "", "", "", 输出方向栅格数据__2_, 输出量级栅格数据__2_)

4、地图代数

# Process: 栅格计算器
arcpy.gp.RasterCalculator_sa("", 输出栅格)

5、多元分析

# Process: Iso 聚类
arcpy.gp.IsoCluster_sa("", 输出特征文件, "", "20", "20", "10") # Process: Iso 聚类非监督分类
arcpy.gp.IsoClusterUnsupervisedClassification_sa("", "", 输出分类的栅格数据, "20", "10", 输出特征文件__2_) # Process: 主成分分析
arcpy.gp.PrincipalComponents_sa("", 输出多波段栅格, "", 输出数据文件) # Process: 创建特征文件
arcpy.gp.CreateSignatures_sa("", "", 输出特征文件__3_, "COVARIANCE", "") # Process: 最大似然法分类
arcpy.gp.MLClassify_sa("", "", 输出分类的栅格数据__2_, "0.0", "EQUAL", "", 输出置信栅格) # Process: 树状图
arcpy.gp.Dendrogram_sa("", 输出树状图文件, "VARIANCE", "78") # Process: 波段集统计
arcpy.gp.BandCollectionStats_sa("", 输出统计文件, "BRIEF") # Process: 类别概率
arcpy.gp.ClassProbability_sa("", "", 输出多波段栅格__2_, "100", "EQUAL", "") # Process: 编辑特征文件
arcpy.gp.EditSignatures_sa("", "", "", 输出特征文件__4_, "10")

6、太阳辐射

# Process: 太阳辐射区域
arcpy.gp.AreaSolarRadiation_sa("", 输出总辐射栅格, "45", "200", "MultiDays 2021 5 160", "14", "0.5", "NOINTERVAL", "1", "FROM_DEM", "32", "8", "8", "UNIFORM_SKY", "0.3", "0.5", 输出直接辐射栅格数据, 输出散射辐射栅格数据, 输出直接辐射持续时间栅格数据) # Process: 太阳辐射图
arcpy.gp.SolarRadiationGraphics_sa("", 输出视域栅格数据, "", "200", "0", "32", "45", "MultiDays 2021 5 160", "14", "0.5", 输出太阳图栅格, "8", "8", 输出星空图栅格) # Process: 太阳辐射点
arcpy.gp.PointsSolarRadiation_sa("", "", 输出总辐射要素, "0", "45", "200", "MultiDays 2021 5 160", "14", "0.5", "NOINTERVAL", "1", "FROM_DEM", "32", "8", "8", "UNIFORM_SKY", "0.3", "0.5", 输出直接辐射要素, 输出散射辐射要素, 输出直接辐射持续时间要素)

7、密度分析

# Process: 核密度分析
arcpy.gp.KernelDensity_sa("", "", 输出栅格, "", "", "SQUARE_MAP_UNITS", "DENSITIES", "PLANAR") # Process: 点密度分析
arcpy.gp.PointDensity_sa("", "", 输出栅格__2_, "", "Circle 0 MAP", "SQUARE_MAP_UNITS") # Process: 线密度分析
arcpy.gp.LineDensity_sa("", "", 输出栅格__3_, "", "", "SQUARE_MAP_UNITS")

8、局部分析

# Process: 像元统计数据
arcpy.gp.CellStatistics_sa("", 输出栅格, "MEAN", "DATA") # Process: 合并
arcpy.gp.Combine_sa("", 输出栅格__2_) # Process: 大于频数
arcpy.gp.GreaterThanFrequency_sa("", "", 输出栅格__3_) # Process: 小于频数
arcpy.gp.LessThanFrequency_sa("", "", 输出栅格__4_) # Process: 最低位置
arcpy.gp.LowestPosition_sa("", 输出栅格__5_) # Process: 最高位置
arcpy.gp.HighestPosition_sa("", 输出栅格__6_) # Process: 等于频数
arcpy.gp.EqualToFrequency_sa("", "", 输出栅格__7_) # Process: 等级
arcpy.gp.Rank_sa("", "", 输出栅格__8_) # Process: 频数取值
arcpy.gp.Popularity_sa("", "", 输出栅格__9_)

9、影像分割和分类

# Process: Mean shift 影像分割
arcpy.gp.SegmentMeanShift_sa("", 输出栅格数据集, "15.5", "15", "20", "") # Process: 从种子点生成训练样本
arcpy.gp.GenerateTrainingSamplesFromSeedPoints_sa("", "", 输出训练样本要素类, "30", "50") # Process: 分类栅格
arcpy.gp.ClassifyRaster_sa("", "", 输出分类的栅格数据, "") # Process: 创建精度评估点
arcpy.gp.CreateAccuracyAssessmentPoints_sa("", 输出精度评估点, "CLASSIFIED", "500", "STRATIFIED_RANDOM") # Process: 导出深度学习的训练数据
arcpy.gp.ExportTrainingDataForDeepLearning_sa("", 输出文件夹, "", "TIFF", "256", "256", "128", "128", "ONLY_TILES_WITH_FEATURES", "KITTI_rectangles", "0", "", "0") # Process: 更新精度评估点
arcpy.gp.UpdateAccuracyAssessmentPoints_sa("", "", 输出精度评估点__2_, "CLASSIFIED") # Process: 检查训练样本
arcpy.gp.InspectTrainingSamples_sa("", "", "", 输出训练样本要素类_含分数_, 输出误分类栅格, "") # Process: 移除栅格影像分割块伪影
arcpy.gp.RemoveRasterSegmentTilingArtifacts_sa("", 输出栅格数据集__2_, "512", "512") # Process: 计算分割影像属性
arcpy.gp.ComputeSegmentAttributes_sa("", 输出段索引栅格, "", "COLOR;MEAN") # Process: 计算混淆矩阵
arcpy.gp.ComputeConfusionMatrix_sa("", 输出混淆矩阵) # Process: 训练 ISO 聚类分类器
arcpy.gp.TrainIsoClusterClassifier_sa("", "", 输出分类程序定义文件, "", "20", "20", "10", "COLOR;MEAN", "5", "0.5") # Process: 训练支持向量机分类器
arcpy.gp.TrainSupportVectorMachineClassifier_sa("", "", 输出分类程序定义文件__2_, "", "500", "COLOR;MEAN") # Process: 训练最大似然法分类器
arcpy.gp.TrainMaximumLikelihoodClassifier_sa("", "", 输出分类程序定义文件__3_, "", "COLOR;MEAN") # Process: 训练随机树分类器
arcpy.gp.TrainRandomTreesClassifier_sa("", "", 输出分类器定义文件, "", "50", "30", "1000", "COLOR;MEAN")

10、提取分析

# Process: 值提取至点
arcpy.gp.ExtractValuesToPoints_sa("", "", 输出点要素, "NONE", "VALUE_ONLY") # Process: 多值提取至点
arcpy.gp.ExtractMultiValuesToPoints_sa("", "", "NONE") # Process: 按圆提取
arcpy.gp.ExtractByCircle_sa("", "", "", 输出栅格, "INSIDE") # Process: 按多边形提取
arcpy.gp.ExtractByPolygon_sa("", "", 输出栅格__2_, "INSIDE") # Process: 按属性提取
arcpy.gp.ExtractByAttributes_sa("", "", 输出栅格__3_) # Process: 按掩膜提取
arcpy.gp.ExtractByMask_sa("", "", 输出栅格__4_) # Process: 按点提取
arcpy.gp.ExtractByPoints_sa("", "", 输出栅格__5_, "INSIDE") # Process: 按矩形提取
arcpy.gp.ExtractByRectangle_sa("", "DEFAULT", 输出栅格__6_, "INSIDE") # Process: 采样
arcpy.gp.Sample_sa("", "", 输出表, "NEAREST", "", "CURRENT_SLICE")

11、插值分析

# Process: 克里金法
arcpy.gp.Kriging_sa("", "", 输出表面栅格, "None #", "", "VARIABLE 12", 输出预测栅格数据的方差) # Process: 反距离权重法
arcpy.gp.Idw_sa("", "", 输出栅格, "", "2", "VARIABLE 12", "") # Process: 含障碍的样条函数
arcpy.gp.SplineWithBarriers_sa("", "", "", "", 输出栅格__2_, "0") # Process: 地形转栅格
arcpy.gp.TopoToRaster_sa("", 输出表面栅格__2_, "", "DEFAULT", "20", "", "", "ENFORCE", "CONTOUR", "20", "", "1", "0", "2.5", "100", 输出河流折线要素, 输出其余汇点要素, 输出诊断文件, 输出参数文件, "", 输出残差点要素, 输出河流和悬崖错误点要素, 输出等值线错误点要素) # Process: 样条函数法
arcpy.gp.Spline_sa("", "", 输出栅格__3_, "", "REGULARIZED", "0.1", "12") # Process: 自然邻域法
arcpy.gp.NaturalNeighbor_sa("", "", 输出栅格__4_, "") # Process: 趋势面法
arcpy.gp.Trend_sa("", "", 输出栅格__5_, "", "1", "LINEAR", 输出_RMS_文件) # Process: 通过文件实现地形转栅格
arcpy.gp.TopoToRasterByFile_sa("", 输出表面栅格__3_, 输出河流折线要素__2_, 输出其余汇点要素__2_, 输出残差点要素__2_, 输出河流和悬崖错误点要素__2_, 输出等值线错误点要素__2_)

12、数学分析

Spatial Analyst 工具-数学分析

13、条件分析

# Process: 条件函数
arcpy.gp.Con_sa("", "", 输出栅格, "", "") # Process: 设为空函数
arcpy.gp.SetNull_sa("", "", 输出栅格__2_, "") # Process: 选取函数
arcpy.gp.Pick_sa("", "", 输出栅格__3_)

14、栅格创建

# Process: 创建常量栅格
arcpy.gp.CreateConstantRaster_sa(输出栅格, "", "INTEGER", "1", "0 0 250 250") # Process: 创建正态栅格
arcpy.gp.CreateNormalRaster_sa(输出栅格__2_, "1", "0 0 250 250") # Process: 创建随机栅格
arcpy.gp.CreateRandomRaster_sa(输出栅格__3_, "", "1", "0 0 250 250")

15、栅格综合

# Process: Nibble
arcpy.gp.Nibble_sa("", "", 输出栅格, "ALL_VALUES", "PRESERVE_NODATA", "") # Process: 众数滤波
arcpy.gp.MajorityFilter_sa("", 输出栅格__2_, "FOUR", "MAJORITY") # Process: 区域合并
arcpy.gp.RegionGroup_sa("", 输出栅格__3_, "FOUR", "WITHIN", "ADD_LINK", "") # Process: 收缩
arcpy.gp.Shrink_sa("", 输出栅格__4_, "", "") # Process: 散度
arcpy.gp.Expand_sa("", 输出栅格__5_, "", "") # Process: 细化
arcpy.gp.Thin_sa("", 输出栅格__6_, "ZERO", "NO_FILTER", "ROUND", "") # Process: 聚合
arcpy.gp.Aggregate_sa("", 输出栅格__7_, "", "SUM", "EXPAND", "DATA") # Process: 边界清理
arcpy.gp.BoundaryClean_sa("", 输出栅格__8_, "NO_SORT", "TWO_WAY")

16、水文分析

# Process: 填洼
arcpy.gp.Fill_sa("", 输出表面栅格, "") # Process: 捕捉倾泻点
arcpy.gp.SnapPourPoint_sa("", "", 输出栅格, "0", "") # Process: 栅格河网矢量化
arcpy.gp.StreamToFeature_sa("", "", 输出折线要素, "SIMPLIFY") # Process: 水流长度
arcpy.gp.FlowLength_sa("", 输出栅格__2_, "DOWNSTREAM", "") # Process: 汇
arcpy.gp.Sink_sa("", 输出栅格__3_) # Process: 河流链接
arcpy.gp.StreamLink_sa("", "", 输出栅格__4_) # Process: 河网分级
arcpy.gp.StreamOrder_sa("", "", 输出栅格__5_, "STRAHLER") # Process: 流动距离
arcpy.gp.FlowDistance_sa("", "", 输出栅格__6_, "", "VERTICAL", "D8", "MINIMUM") # Process: 流向
arcpy.gp.FlowDirection_sa("", 输出流向栅格数据, "NORMAL", 输出下降率栅格数据, "D8") # Process: 流量
arcpy.gp.FlowAccumulation_sa("", 输出蓄积栅格数据, "", "FLOAT", "D8") # Process: 盆域分析
arcpy.gp.Basin_sa("", 输出栅格__7_) # Process: 集水区
arcpy.gp.Watershed_sa("", "", 输出栅格__8_, "")

17、表面分析

# Process: 可见性
arcpy.gp.Visibility_sa("", "", 输出栅格, 输出地平面以上的栅格, "FREQUENCY", "ZERO", "1", "FLAT_EARTH", "0.13", "", "", "", "", "", "", "", "", "") # Process: 含障碍的等值线
arcpy.gp.ContourWithBarriers_sa("", 输出等值线要素, "", "POLYLINES", "", "NO_EXPLICIT_VALUES_ONLY", "0", "", "0", "", "1") # Process: 坡向
arcpy.gp.Aspect_sa("", 输出栅格__2_, "PLANAR", "METER") # Process: 坡度
arcpy.gp.Slope_sa("", 输出栅格__3_, "DEGREE", "1", "PLANAR", "METER") # Process: 填挖方
arcpy.gp.CutFill_sa("", "", 输出栅格__4_, "1") # Process: 山体阴影
arcpy.gp.HillShade_sa("", 输出栅格__5_, "315", "45", "NO_SHADOWS", "1") # Process: 曲率
arcpy.gp.Curvature_sa("", 输出曲率栅格, "1", 输出剖面曲线栅格, 输出平面曲线栅格) # Process: 等值线
arcpy.gp.Contour_sa("", 输出要素类, "", "0", "1", "CONTOUR", "") # Process: 等值线列表
arcpy.gp.ContourList_sa("", 输出折线要素, "") # Process: 视域
arcpy.gp.Viewshed_sa("", "", 输出栅格__6_, "1", "FLAT_EARTH", "0.13", 输出地平面以上的栅格__2_) # Process: 视域 2
arcpy.gp.Viewshed2_sa("", "", 输出栅格__7_, 输出地平面以上的栅格__3_, "FREQUENCY", "0 Meters", 输出观察点_区域关系表, "0.13", "0 Meters", "", "1 Meters", "", "GROUND", "", "GROUND", "0", "360", "90", "-90", "ALL_SIGHTLINES") # Process: 视点分析
arcpy.gp.ObserverPoints_sa("", "", 输出栅格__8_, "1", "FLAT_EARTH", "0.13", 输出地平面以上的栅格__4_)

18、距离

# Process: 廊道分析
arcpy.gp.Corridor_sa("", "", 输出栅格) # Process: 成本分配
arcpy.gp.CostAllocation_sa("", "", 输出分配栅格数据, "", "", "", 输出距离栅格数据, 输出回溯链接栅格数据, "", "", "", "", "") # Process: 成本回溯链接
arcpy.gp.CostBackLink_sa("", "", 输出回溯链接栅格数据__2_, "", 输出距离栅格数据__2_, "", "", "", "", "") # Process: 成本距离
arcpy.gp.CostDistance_sa("", "", 输出距离栅格数据__3_, "", 输出回溯链接栅格数据__3_, "", "", "", "", "") # Process: 成本路径
arcpy.gp.CostPath_sa("", "", "", 输出栅格__2_, "EACH_CELL", "", "INPUT_RANGE") # Process: 成本路径折线
arcpy.gp.CostPathAsPolyline_sa("", "", "", 输出折线要素, "BEST_SINGLE", "", "INPUT_RANGE") # Process: 成本连通性
arcpy.gp.CostConnectivity_sa("", "", 输出要素类, 相邻连接的输出要素类) # Process: 欧氏分配
arcpy.gp.EucAllocation_sa("", 输出分配栅格数据__2_, "", "", "", "", 输出距离栅格数据__4_, 输出方向栅格数据, "PLANAR", "", 输出反向栅格) # Process: 欧氏反向
arcpy.gp.EucBackDirection_sa("", 输出反向栅格__2_, "", "", "", "PLANAR") # Process: 欧氏方向
arcpy.gp.EucDirection_sa("", 输出方向栅格数据__2_, "", "", 输出距离栅格数据__5_, "PLANAR", "", 输出反向栅格__3_) # Process: 欧氏距离
arcpy.gp.EucDistance_sa("", 输出距离栅格数据__6_, "", "", 输出方向栅格数据__3_, "PLANAR", "", 输出反向栅格__4_) # Process: 路径距离
arcpy.gp.PathDistance_sa("", 输出距离栅格数据__7_, "", "", "", "BINARY 1 45", "", "BINARY 1 -30 30", "", 输出回溯链接栅格数据__4_, "", "", "", "", "") # Process: 路径距离分配
arcpy.gp.PathAllocation_sa("", 输出分配栅格数据__3_, "", "", "", "BINARY 1 45", "", "BINARY 1 -30 30", "", "", "", 输出距离栅格数据__8_, 输出回溯链接栅格数据__5_, "", "", "", "", "") # Process: 路径距离回溯链接
arcpy.gp.PathBackLink_sa("", 输出回溯链接栅格数据__6_, "", "", "", "BINARY 1 45", "", "BINARY 1 -30 30", "", 输出距离栅格数据__9_, "", "", "", "", "")

19、邻域分析

# Process: 块统计
arcpy.gp.BlockStatistics_sa("", 输出栅格, "Rectangle 3 3 CELL", "MEAN", "DATA") # Process: 滤波器
arcpy.gp.Filter_sa("", 输出栅格__2_, "LOW", "DATA") # Process: 点统计
arcpy.gp.PointStatistics_sa("", "", 输出栅格__3_, "", "Rectangle 3 3 CELL", "MEAN") # Process: 焦点流
arcpy.gp.FocalFlow_sa("", 输出栅格__4_, "0") # Process: 焦点统计
arcpy.gp.FocalStatistics_sa("", 输出栅格__5_, "Rectangle 3 3 CELL", "MEAN", "DATA", "90") # Process: 线统计
arcpy.gp.LineStatistics_sa("", "", 输出栅格__6_, "", "", "MEAN")

20、重分类

# Process: 使用 ASCII 文件重分类
arcpy.gp.ReclassByASCIIFile_sa("", "", 输出栅格, "DATA") # Process: 使用表重分类
arcpy.gp.ReclassByTable_sa("", "", "", "", "", 输出栅格__2_, "DATA") # Process: 分割
arcpy.gp.Slice_sa("", 输出栅格__3_, "", "EQUAL_INTERVAL", "1") # Process: 按函数重设比例
arcpy.gp.RescaleByFunction_sa("", 输出栅格__4_, "MSSMALL # # # # # #", "1", "10") # Process: 查找表
arcpy.gp.Lookup_sa("", "", 输出栅格__5_) # Process: 重分类
arcpy.gp.Reclassify_sa("", "", "", 输出栅格__6_, "DATA")

Spatial Analyst Tools(Spatial Analyst 工具)的更多相关文章

  1. 3D Analyst Tools(3D Analyst 工具)

    3D Analyst 工具 工具里有又细分如下分类: 注:以下代码的参数需要另行配置,不能直接执行:Python2不支持中文变量! 1.3D 要素 # Process: 3D 内部 arcpy.Ins ...

  2. SCNN车道线检测--(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读)

    Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artific ...

  3. 2. Packet crafting tools (封包工具 6个)

    2. Packet crafting tools (封包工具 6个) NetcatHping这个方便小巧的实用程序组装并发送定制的ICMP,UDP或TCP数据包,然后显示任何回复. 它受到ping命令 ...

  4. OS X 10.9 Mavericks下如何安装Command Line Tools(命令行工具)

    OS X 10.9 Mavericks下如何安装Command Line Tools(命令行工具) 今天OS X 10.9 Mavericks正式发布,免费更新,立即去更新看看效果. 不过升级后安装命 ...

  5. Geostatistical Analyst Tools(Geostatistical Analyst 工具)

    Geostatistical Analyst 工具 1.使用地统计图层 # Process: GA 图层至格网 arcpy.GALayerToGrid_ga("", 输出表面栅格, ...

  6. Network Analyst Tools(Network Analyst 工具)

    Network Analyst 工具 1.分析 # Process: 创建 OD 成本矩阵图层 arcpy.MakeODCostMatrixLayer_na("", "O ...

  7. Tracking Analyst Tools(Tracking Analyst 工具)

    Tracking Analyst 工具 # Process: 创建追踪图层 arcpy.MakeTrackingLayer_ta("", 输出图层, "NO_TIME_Z ...

  8. Spatial Statistics Tools(空间统计工具)

    空间统计工具 1.分析模式 # Process: 增量空间自相关 arcpy.IncrementalSpatialAutocorrelation_stats("", "& ...

  9. 如何在OS X 10.9 Mavericks下安装Command Line Tools(命令行工具)

    随着OS X 10.9 于 2013年6月10日在旧金山WWDC(world wide developer conference)上发布.是首个不使用猫科动物命名的系统,而转用加利福尼亚的产物. 该系 ...

随机推荐

  1. cmd关闭端口占用

    netstat -nao |findStr "8080" taskkill /pid 15406  /f

  2. Servlet监听器详解及举例

    监听器就是一个实现特定接口的普通java程序,这个程序专门用于监听另一个java对象的方法调用或属性改变,当被监听对象发生上述事件后,监听器某个方法将立即被执行. 监听器原理 监听原理 1.存在事件源 ...

  3. Shell脚本一键部署——源码编译安装MySQL及自动补全工具

    Shell脚本一键部署--源码编译安装MySQL及自动补全工具 编译安装MySQL 1.软件包 Mysql安装包 将安装包拖至/opt目录下,编辑一个脚本文件,将以下内容复制进去,然后source或者 ...

  4. Python - //和/的区别

    / 表示浮点数除法,返回浮点结果; // 表示整数除法,返回不大于结果的一个最大的整数 print("6 // 4 = " + str(6 // 4)) print("6 ...

  5. 关于Golang的学习路线

    基础 安装golang环境 Golang基础,流程控制,函数,方法,面向对象 网络编程(自己做一个简单的tcp的聊天室,websocket,http,命令行工具) 并发(可以看一下并发爬虫或者下载器的 ...

  6. SpringBoot-自动配置分析-图解

  7. 使用python快速搭建http服务

    python2语法:python -m SimpleHTTPServer python3语法:python -m http.server 在局域网中使用web去访问http:/IP:8000即可 可以 ...

  8. [第十六篇]——Docker 安装 CentOS之Spring Cloud直播商城 b2b2c电子商务技术总结

    Docker 安装 CentOS CentOS(Community Enterprise Operating System)是 Linux 发行版之一,它是来自于 Red Hat Enterprise ...

  9. k8s nodes节点 notready问题

    1.在master查看node状态 [root@master1 ~]# kubectl get nodes NAME STATUS ROLES AGE VERSION master1 Ready co ...

  10. Windows 11抢先体验

    SHA1值: 3B6DA9194BA303AC7DBBF2E521716C809500919C 谷歌云:https://drive.google.com/file/d/1sH0cBI9hwh8EdlV ...