题目大意:

给定n个点排成一排,每个点有一个点权,有m次修改,每次改变某个点的点权并将最大点独立集计入答案,输出最终的答案



其中\(n\le 40000\ , \ m\le 50000\)

QWQ说实话,一开始看这个题,没啥思路呀

后来看了题解才知道是线段树

我们考虑对一个区间,我们只需要关心左右节点是否取,就可以从小的区间更新大区间。

从而实现线段树的区间合并了

QWQ我们定义

\(f[i].both\)表示左右边界都取

\(f[i].left\)表示只取左边界

\(f[i].right\)表示只取右边界

\(f[i].neither\)表示左右边界都不取

对于每种情况,我们分开讨论

首先定义\(l=2*root,r=2*root+1\)

对于\(f[root].both\)

\(f[root].both=max(f[l].left+max(f[r].both,f[r].right),f[l].both+f[r].right);\)

也就是如果左边只取左,右边可以都取或者只取右

如果左边都取,那么右边只能取右了(因为中间的左右区间的交界处也是不能同时取到的)

对于\(f[root].right,f[root].left\)

\(f[root].left=max(f[l].left+max(f[r].neither,f[r].left),f[l].both+f[r].neither);\)

\(f[root].right=max(f[l].neither+max(f[r].right,f[r].both),f[l].right+f[r].right);\)

同样的方法,处理一下

而对于\(f[root].neither\)

\(f[root].neither=max(max(f[l].neither+f[r].neither,f[l].right+f[r].neither),f[r].left+f[l].neither)\)

然后考虑更新的部分话

将一个点权修改也就是重新更新那个节点的\(f[root].both\),然后将其他的清零。

最后更新就行

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<map>
#include<vector> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 40010; struct Node{
int left,right,both,neither;
}; Node f[4*maxn];
int n,a[maxn];
int m;
long long ans; void up(int root)
{
int l = 2*root,r=2*root+1;
f[root].both=max(f[l].left+max(f[r].both,f[r].right),f[l].both+f[r].right);
f[root].left=max(f[l].left+max(f[r].neither,f[r].left),f[l].both+f[r].neither);
f[root].right=max(f[l].neither+max(f[r].right,f[r].both),f[l].right+f[r].right);
f[root].neither=max(max(f[l].neither+f[r].neither,f[l].right+f[r].neither),f[r].left+f[l].neither);
} void build(int root,int l,int r)
{
if (l==r)
{
f[root].left=f[root].right=f[root].neither=0;
f[root].both=a[l];
return;
}
int mid = (l+r) >> 1;
build(2*root,l,mid);
build(2*root+1,mid+1,r);
up(root);
} void update(int root,int l,int r,int x,int p)
{
if (l==r)
{
f[root].left=f[root].right=f[root].neither=0;
f[root].both=p;
return;
}
int mid =(l+r) >> 1;
if (x<=mid) update(2*root,l,mid,x,p);
if (x>mid) update(2*root+1,mid+1,r,x,p);
up(root);
} int main()
{
n=read();m=read();
for (int i=1;i<=n;i++) a[i]=read();
build(1,1,n);
for (int i=1;i<=m;i++)
{
int day,x;
day=read(),x=read();
update(1,1,n,day,x);
long long tmp=max(f[1].left,max(f[1].right,max(f[1].both,f[1].neither)));
ans+=tmp;
}
cout<<ans<<endl;
return 0;
}

bzoj4094 && luogu3097 最优挤奶的更多相关文章

  1. P3097 [USACO13DEC]最优挤奶Optimal Milking

    P3097 [USACO13DEC]最优挤奶Optimal Milking 题意简述:给定n个点排成一排,每个点有一个点权,多次改变某个点的点权并将最大点独立集计入答案,输出最终的答案 感谢@zht4 ...

  2. 洛谷P3097 - [USACO13DEC]最优挤奶Optimal Milking

    Portal Description 给出一个\(n(n\leq4\times10^4)\)个数的数列\(\{a_n\}(a_i\geq1)\).一个数列的最大贡献定义为其中若干个不相邻的数的和的最大 ...

  3. [P3097] [USACO13DEC] [BZOJ4094] 最优挤奶Optimal Milking 解题报告(线段树+DP)

    题目链接:https://www.luogu.org/problemnew/show/P3097#sub 题目描述 Farmer John has recently purchased a new b ...

  4. P3097 [USACO13DEC]最优挤奶(线段树优化dp)

    盲猜dp系列... 题意:给定序列,选了i就不能选与i相邻的两个,求最大值,带修改 蒟蒻在考场上10min打完以为只有两种情况的错解...居然能骗一点分... 先讲下当时的思路吧. f[i][0/1] ...

  5. 【USACO13DEC】 最优挤奶 - 线段树

    题目描述 FJ最近买了1个新仓库, 内含N 个挤奶机,1 到N 编号并排成一行. 挤奶机i 每天能产出M(i) 单位的奶.不幸的是, 机器装得太近以至于如果一台机器i 在某天被使用, 那与它相邻的两台 ...

  6. poj 2112 最优挤奶方案

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 16550   Accepted: 5945 ...

  7. dp的林林总总(持续更新,dp骚气解法等等)

    写在前面: 本人dp较弱,所以总结了一些坑点,转化思路以供复习使用,勿喷,甚至一些不是dp的题(贪心等等)也会放在这. 每个点后面会有我自己的题解,如果没有链接,向下找第一个链接,可能会有多题. 1. ...

  8. 题解 最优的挤奶方案(Optimal Milking)

    最优的挤奶方案(Optimal Milking) 时间限制: 1 Sec  内存限制: 128 MB 题目描述 农场主 John 将他的 K(1≤K≤30)个挤奶器运到牧场,在那里有 C(1≤C≤20 ...

  9. 【BZOJ4094】[Usaco2013 Dec]Optimal Milking 线段树

    [BZOJ4094][Usaco2013 Dec]Optimal Milking Description Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号 ...

随机推荐

  1. python·那些不值钱的经验

    时间:2018-11-22 整理:byzqy python读写文本文件 1 # -*- coding: utf-8 -*- 2 3 def read_file(file): 4 with open(f ...

  2. AI使用之技巧

    学习人脸关键点检测的收获: 可以将高难度关键点定位任务,其拆成多个小任务,逐步细化精度,每一层都是小网络,相比用一个复杂大网络,更能节省predict的运行时间. 数据增强Data Augmentat ...

  3. 去除所有js,html,css代码

    <?php$search = array ("'<script[^>]*?>.*?</script>'si", // 去掉 javascript ...

  4. 性能测试工具JMeter 基础(六)—— 测试元件: 线程组

    线程组的定义: 线程组是测试计划执行的入口,所有的逻辑控制器和取样器都必须在线程组下,其他的元件根据位置的不同作用域是不同的. 线程组是每个线程都是独立运行测试脚本,一个线程组就等于一个用户,通过多个 ...

  5. vscode安装go插件失败

    解决办法:使用golang代理,在环境变量中添加两个新变量: 详情参考vscode中为golang开发环境配置代理goproxy 之后便有一部分可以安装成功

  6. Typora画各类流程图、甘特图、饼图等详细文档

    Draw Diagrams With Markdown August 15, 2016 by typora.io Typora supports some Markdown extensions fo ...

  7. 计算机网络参考模型和5G模型的那些事

    一.分层思想 二.OSI参考模型 三.TCP/IP协议族 四.数据封装和解封装过程 五.层间通讯过程 六.3GPP规范及5G协议栈 一.分层思想 享用牛奶的人未必了解其生产过程 使用网络的人未必知道数 ...

  8. 74cms v3.3 后台SQL注入

    注入存在于后台 admin_baiduxml.php 代码 52-63行 elseif($act == 'setsave') { $_POST['xmlmax']=intval($_POST['xml ...

  9. 定时器及PWM

    1 定时器 1.1 定时器分类 对于STM32来说,定时器可分为基本定时器.通用定时器.高级定时器三类,后者包括前者的全部功能.以stm32f1系列为例,TIM6和TIM7为基本定时器,TIM2~TI ...

  10. CentOS安装oh-my-zsh并配置语法高亮和命令自动补全

    安装zsh 和 oh-my-zsh 安装zsh yum install zsh 安装git yum install git 切换默认shell chsh -s /bin/zsh clone from ...