昨晚简单 vp 了场比赛找了找状态,切了 5 个题(有一个差点调出来),rk57,还算理想吧,毕竟我已经好久没碰过电脑了(

A

签到题不多说,直接输出 \(\min\{a,b,\dfrac{a+b}{3}\}\) 即可

B

对于每次操作维护一个区间 \([l,r]\) 表示有可能是 \(1\) 的位置组成的集合(显然是一个区间),初始 \(l=r=x\),每次操作如果 \([l,r]\) 和操作的区间有交那么取个并即可,复杂度线性

C

开个桶记录下到 \((1,1)\) 距离为 \(1,2,3,\cdots,n+m-1\) 的点中分别有多少个 \(0,1\),然后在对称的位置里面取 \(\min\) 相加即可,复杂度线性

D

如果 \(n\) 可以表示成 \(p^{\alpha}\) 的形式,其中 \(p\) 是质数,\(\alpha\) 是整数,那么答案就是 \(-1\),否则记 \(mnp_x\) 为 \(x\) 的最小质因子,\(\beta\) 为 \(mnp_n\) 在 \(n\) 的质因数分解形式中的最大因子,那么 \(\dfrac{n}{p^{\beta}},mnp_{\dfrac{n}{p^{\beta}}}\) 符合条件

E

对于每一段二分找出这一段可能的左端点、右端点,然后乘法原理乘起来即可,二分检验可用 ST 表

F

这道题还蛮有意思的,比赛最后几分钟肝出来了,却因为爆 int 一直 WA 8,赛后 2min 把它 A 掉了……

首先注意到图中每个简单路径的长度都 \(\le m\),因此当 \(k\) 比较大(\(>m\))组成的路径肯定不是简单路径,故不难猜出当 \(k\) 比较大时最优方案是先走到某条边 \(e\) 的一个端点处,然后在这条边上来回走动,在这种情况下每过一秒经过的长度 \(\Delta l\) 都等于这条边的边权 \(w\),因此这条边经过的路径长度可以写成一个与时间 \(t\) 有关的一次函数 \(y=wt+b(t\ge t_0)\),其中 \(t_0\) 为到达这条边的时间。

受到这个思想的启发,我们可以先暴力 \(dp\) 求出当 \(k\le m\) 时以每个点结束的最短路径,这部分的贡献我们特殊处理一下,特判掉。对于 \(k>m\) 的部分我们就暴力枚举是哪条边,以及到达这条边的时间 \(t_0\),这样有 \(n^2\) 条直线(或者准确来说,是一条射线),求出它们的凸壳即可,复杂度 \(n^2\log n\) 可以通过。当然这里也有一个非常 trival 的优化,不难发现同一条边,对于不同的 \(t_0\),它们表示的直线的斜率是相同的,我们只需保留截距最大的那条即可。这样建凸包的时间可以降到 \(n\log n\),总复杂度 \(nm+n\log n\)。

G

这道题倒感觉不如 F 有意思,虽然我现场并没有想到正解,可能是我 \(dp\) 太菜了吧

一个很显然的思路是设 \(dp_{i,j}\) 表示考虑了前 \(i\) 位,现在匹配到第 \(j\) 位的最小删除字符个数。这一步我倒是想到了,然鹅我只想到了线性的转移,看来还是 wtcl 了啊……

事实上这个状态可以实现 \(\mathcal O(1)\) 转移:

  • \(dp_{i+1,j}\leftarrow dp_{i,j}+1\)
  • \(dp_{i+1,j+1}\leftarrow dp_{i,j}(s_{i+1}=t_{j+1})\)
  • \(dp_{nxt_i,j}\leftarrow dp_{i,j}\)(其中 \(nxt_i\) 为从 \(i\) 开始,如果把小写字母当作左括号,点当作右括号,第一个达到括号平衡的位置)

时空复杂度均平方。

Educational Codeforces Round 89 题解的更多相关文章

  1. Educational Codeforces Round 89 (Rated for Div. 2) C. Palindromic Paths(贪心)

    题目链接:https://codeforces.com/contest/1366/problem/C 题意 有一个 $n \times m$ 的 $01$迷宫,要使从 $(1,1)$ 到 $(n,m) ...

  2. Educational Codeforces Round 89 (Rated for Div. 2) B. Shuffle(数学/双指针)

    题目链接:https://codeforces.com/contest/1366/problem/B 题意 大小为 $n$ 的数组 $a$,除了 $a_x = 1$,其余 $a_i = 0$,依次给出 ...

  3. Educational Codeforces Round 89 (Rated for Div. 2) A. Shovels and Swords(贪心/数学)

    题目链接:https://codeforces.com/contest/1366/problem/A 题意 有两个数 $a$ 和 $b$,每次可以选择从一个数中取 $2$,另一个数中取 $1$,问最多 ...

  4. Educational Codeforces Round 89 (Rated for Div. 2) C Palindromic Paths

    题目链接:Palindromic Paths 题意: 给你一个n行m列的矩阵,这个矩阵被0或者1所填充,你需要从点(1,1)走到点(n,m).这个时候会有很多路径,每一条路径对应一个01串,你可以改变 ...

  5. Educational Codeforces Round 19 题解【ABCDE】

    A. k-Factorization 题意:给你一个n,问你这个数能否分割成k个大于1的数的乘积. 题解:因为n的取值范围很小,所以感觉dfs应该不会有很多种可能-- #include<bits ...

  6. Educational Codeforces Round 55 题解

    题解 CF1082A [Vasya and Book] 史上最难A题,没有之一 从题意可以看出,翻到目标页只有三种办法 先从\(x\)到\(1\),再从\(1\)到\(y\) 先从\(x\)到\(n\ ...

  7. Codeforces Educational Codeforces Round 54 题解

    题目链接:https://codeforc.es/contest/1076 A. Minimizing the String 题意:给出一个字符串,最多删掉一个字母,输出操作后字典序最小的字符串. 题 ...

  8. Educational Codeforces Round 89 (Rated for Div. 2) A Shovels and Swords B、Shuffle

    题目链接:A.Shovels and Swords 题意: 你需要一个木棍和两个钻石可以造出来一把剑 你需要两个木棍和一个钻石可以造出来一把铁锹 你现在有a个木棍,b个钻石,问你最多可以造出来几件东西 ...

  9. Educational Codeforces Round 89 (Rated for Div. 2)D. Two Divisors 线性筛质因子

    题目链接:D:Two Divisors 题意: 给你n个数,对于每一个数vi,你需要找出来它的两个因子d1,d2.这两个因子要保证gcd(d1+d2,vi)==1.输出的时候输出两行,第一行输出每一个 ...

随机推荐

  1. Less-(26~28) preg_replace3

    Less-26: 核心语句:  各种回显均存在. 本题相比Less-25,多屏蔽了很多符号: 首先是各种注释符 --+,#,/**/  . /[]/表示字符集合:任何出现在里面的字符均会被替换. 屏蔽 ...

  2. linux下命令拼接

    前言:我个five,一道特别简单的拼接题没有做出来,我吐了,不过也是涨知识了 直接切入正题了 linux命令是可以拼接的,也就是说在一个system("???")下我们的???可以 ...

  3. 使用spire.doc导出支持编辑Latex公式的标准格式word

    背景 之前有的教辅标注需求,在导出题库的时候希望顺便导出可以查看word,方便线下预览成品效果,因为只是用来预览并且为了沿用前端的样式,当时方案就是直接生成html,写个word的文件头,这样就可以用 ...

  4. hdu 5056 Boring count (类似单调队列的做法。。)

    给一个由小写字母构成的字符串S,问有多少个子串满足:在这个子串中每个字母的个数都不超过K. 数据范围: 1<=T<= 1001 <= the length of S <= 10 ...

  5. 【网络好文】---MySQL为Null导致的四大坑

    正式开始之前,我们先来看下 MySQL 服务器的配置和版本号信息,如所示: select version(); -- 版本为 8.0.22 "兵马未动粮草先行",看完了相关的配置之 ...

  6. nginx 支持https访问

    1,先确认nginx安装时已编译http_ssl模块. 就是执行nginx -V命令查看是否存在--with-http_ssl_module.如果没有,则需要重新编译nginx将该模块加入.yum安装 ...

  7. Centos 系统常用编译环境

    centos编译环境配置 yum install -y autoconf make automake gcc gcc-c++

  8. LOTO虚拟示波器软件功能演示之——FIR数字滤波

    本文章介绍一下LOTO示波器新出的功能--FIR数字滤波的功能. 在此之前我们先来了解一下带通滤波和带阻滤波.我们都知道每个信号是不同频率不同幅值正弦波的线性叠加,为了方便直接得观察到这种现象,就有了 ...

  9. seq2seq之双向解码

    目录 背景介绍 双向解码 基本思路 数学描述 模型实现 训练方案 双向束搜索 代码参考 思考分析 文章小结 在文章<玩转Keras之seq2seq自动生成标题>中我们已经基本探讨过seq2 ...

  10. testNG安装与使用

    1.Eclipse集成TestNG插件 a.下载TestNG离线插件并解压得到features和plugins两个文件夹: b.将features文件下的org.testng.eclipse_6.9. ...