题面传送门

题意:

  • 你有一个集合 \(S={2,3,\dots,n}\)
  • 你要选择两个集合 \(A\) 和 \(B\),满足:
  1. \(A \subseteq S\),\(B \subseteq S\),且 \(A \cap B=\varnothing\)
  2. 不存在两个数 \(x \in A\),\(y \in B\),且 \(\operatorname{gcd}(x,y)>1\)。
  • 求满足条件的集合 \(A,B\) 的数量。

    \(n \in [2,500]\)

通过分析题面可以发现,如果两个集合 \(A,B\) 满足条件,那么它们的质因子组成的集合一定不会重复。

先考虑 \(30\) 分的做法。\(30\) 以内的质数只有 \(10\) 个(\(2,3,5,7,11,13,17,19,23,29\))。

我们分别给这 \(10\) 个质数标号 \(1\) 到 \(10\)。这样我们可以使用一个 \(10\) 位二进制数表示质因子的选择情况。

例如 \((1011001100)_2\) 就表示集合中包含质因子 \(2,5,7,17,19\)。

再将 \(2\) 到 \(n\) 每个数分解质因数。记 \(fac_i\) 为 \(i\) 质因子的集合。

到这里,不少题解都使用了三维状压 \(dp\)。这里我要介绍一个不太一样的方法。

我们开一个数组 \(cnt_{i,j}\),其中 \(i \in [2,n],j \in [0,2^{10}-1]\)。

表示满足 \(2 \leq x \leq i\),\(fac_i \subseteq j\) 的 \(x\) 的个数

再设 \(dp_s\) 表示质因子集合为 \(s\) 的集合数量。

显然所有 \(fac_i \subseteq s\) 的 \(i\) 都可以被选,那么总共有 \(cnt_{n,i}\) 个数,每个数都有选与不选两种可能,故 \(dp_s=2^{cnt_{n,i}}\)

最后是统计答案,枚举质因子集合 \(s,t\)(根据条件 2,\(s\&t=0\)),两个集合的选择方法是独立的,因此,根据乘法原理,这一部分对答案的贡献为 \(dp_s \times dp_t\)。

但是这样做还不行。假设有一个集合 \(T={2,4}\),那么 \(T\) 在 \(dp_1\) 中被计算了一次,在 \(dp_3\) 中又被计算了一次,会被重复计算。

这时不难想到容斥原理。你对 \(dp\) 数组进行一遍容斥原理就可以了。

再考虑正解。\(n\) 从 \(30\) 扩大到了 \(500\),就不能像 \(30\) 分做法那样将一个质因子集合用二进制表示出来了。

但是注意到 \(\sqrt{500}\) 只有 \(22\),而 \(22\) 以内的质数只有 \(8\) 个。

那么我们可以用根号分治的思想将质数分成两类,一类是 \(\leq 22\) 的质数(我们称其为“小质数”),另一类是 \(\gt 22\) 的质数(我们称其为“大质数”)。

不难发现,\(1\) 到 \(500\) 中的数最多只有一个大质数因子。任意两个大质数乘起来都会 \(\gt 500\)。

换句话说,大质数的选择方案是独立的(是否选择 \(31\) 这个质因子不会影响 \(37\) 的选择方案)

我们枚举小质数因子的集合 \(s,t\),然后考虑每个大质数 \(p\) 的选择方法:

  1. \(p\) 在 \(A\) 中,那么选择的方案数为 \(2^{cnt_{\frac{n}{p},s}+1}\)(你可以看成从 \([1,\frac{n}{p}]\) 选择若干个质因子集合为 \(s\) 的集合然后将每个数乘以 \(p\))
  2. \(p\) 在 \(B\) 中,那么选择的方案数为 \(2^{cnt_{\frac{n}{p},t}+1}\)
  3. \(p\) 既不在 \(A\) 也不在 \(B\) 中,方案数为 \(1\)。

    将三者加起来就是选择 \(p\) 的方案数。

    将选择每个大质数的方案数乘起来就是选择大质数的方案数。

    选择小质数的方案数和 \(30\) 分做法一样用乘法原理将两部分乘起来。

    用容斥原理算一下就可以了。
/*
Contest: -
Problem: P2150
Author: tzc_wk
Time: 2020.7.31
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define fillsmall(a) memset(a,0xcf,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
#define int long long
typedef pair<int,int> pii;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
int n=read(),m=read();
inline int qpow(int x,int e){
int ans=1;
while(e){
if(e&1) ans=ans*x%m;
x=x*x%m;
e>>=1;
}
return ans;
}
int pr[505],num[505],pcnt=0;
bool vis[505];
inline void sieve(){
for(int i=2;i<=500;i++){
if(!vis[i]){
pr[++pcnt]=i;num[i]=pcnt;
for(int j=i+i;j<=500;j+=i) vis[j]=1;
}
}
}
int sumfac[505][1<<8];
int g[505][1<<8],gg[505][1<<8];
inline int calc_fac(int x){
int tmp=x,flg=0;
for(int i=2;i*i<=x;i++){
if(tmp%i==0){
flg|=(1<<(num[i]-1));
while(tmp%i==0) tmp/=i;
}
}
if(tmp>1){
if(num[tmp]>8) return 256;
else flg|=(1<<(num[tmp]-1));
}
return flg;
}
signed main(){
sieve();
fz(i,2,n){
int f=calc_fac(i);
for(int j=0;j<(1<<8);j++){
if((j&f)!=f) sumfac[i][j]=sumfac[i-1][j];
else sumfac[i][j]=sumfac[i-1][j]+1;
// cout<<i<<" "<<j<<" "<<sumfac[i][j]<<endl;
}
}
for(int i=0;i<(1<<8);i++) for(int j=0;j<(1<<8);j++){
if((i&j)==0){
// if(dp[i][n]==0||dp[j][n]==0) continue;
// cout<<i<<" "<<j<<" "<<dp[i][n]<<" "<<dp[j][n]<<endl;
int ans=1;
ans=ans*qpow(2,sumfac[n][i])%m;
ans=ans*qpow(2,sumfac[n][j])%m;
for(int k=23;k<=n;k++){
if(num[k]){
// if(k==23) cout<<i<<" "<<j<<" "<<qpow(2,sumfac[n/k][i]+1)+qpow(2,sumfac[n/k][j]+1)-1<<endl;
ans=ans*(qpow(2,sumfac[n/k][i]+1)+qpow(2,sumfac[n/k][j]+1)-1+m)%m;
}
}
g[i][j]=ans;
// cout<<i<<" "<<j<<" "<<g[i][j]<<endl;
}
}
for(int i=0;i<(1<<8);i++) for(int j=0;j<(1<<8);j++){
if((i&j)==0){
for(int k=0;k<(1<<8);k++){
if((j&k)!=k) continue;
gg[i][j]=(gg[i][j]+(int)pow(-1,__builtin_popcount(j^k))*g[i][k]+m)%m;
}
// cout<<i<<" "<<j<<" "<<gg[i][j]<<endl;
}
}
int sum=0;
for(int i=0;i<(1<<8);i++) for(int j=0;j<(1<<8);j++){
if((i&j)==0){
int x=0;
for(int k=0;k<(1<<8);k++){
if((i&k)!=k) continue;
x=(x+(int)pow(-1,__builtin_popcount(i^k))*gg[k][j]+m)%m;
}
sum=(sum+x)%m;
// cout<<i<<" "<<j<<" "<<x<<endl;
}
}
cout<<sum<<endl;
return 0;
}

UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)的更多相关文章

  1. [NOI2015]寿司晚宴 --- 状压DP

    [NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...

  2. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  3. bzoj4197 [Noi2015]寿司晚宴——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4197 首先,两个人选的数都互质可以看作是一个人选了一个数,就相当于选了一个质因数集合,另一个 ...

  4. 洛谷$P2150\ [NOI2015]$寿司晚宴 $dp$

    正解:$dp$ 解题报告: 传送门$QwQ$. 遇事不决写$dp$($bushi$.讲道理这题一看就感觉除了$dp$也没啥很好的算法能做了,于是考虑$dp$呗 先看部分分?$30pts$发现质因数个数 ...

  5. BZOJ 4197: [Noi2015]寿司晚宴 状压dp+质因数分解

    挺神的一道题 ~ 由于两个人选的数字不能有互质的情况,所以说对于一个质因子来说,如果 1 选了,则 2 不能选任何整除该质因子的数. 然后,我们发现对于 1 ~ 500 的数字来说,只可能有一个大于 ...

  6. [NOI2015]寿司晚宴——状压dp

    题目转化:将2~n的数分成两组,可以不选,使得这两组没有公共的质因子.求方案数. 选择了一个数,相当于选择了它的所有质因子. 30分: 发现,n<=30的时候,涉及到的质因子也就10个.2,3, ...

  7. B4197 [Noi2015]寿司晚宴 状压dp

    这个题一开始想到了唯一分解定理,然后状压.但是显然数组开不下,后来想到每个数(n<500)大于19的素因子只可能有一个,所以直接单独存就行了. 然后正常状压dp就很好搞了. 题干: Descri ...

  8. BZOJ 4197 NOI 2015 寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  9. 【题解】洛谷P3959 [NOIP2017TG] 宝藏(状压DP+DFS)

    洛谷P3959:https://www.luogu.org/problemnew/show/P3959 前言 NOIP2017时还很弱(现在也很弱 看出来是DP 但是并不会状压DP 现在看来思路并不复 ...

随机推荐

  1. 吴恩达深度学习课后习题第5课第1周第3小节: Jazz Improvisation with LSTM

    目录 Improvise a Jazz Solo with an LSTM Network Packages 1 - Problem Statement 1.1 - Dataset What are ...

  2. rocketMQ(一)基础环境

    一.安装: http://rocketmq.apache.org/dowloading/releases/ https://www.apache.org/dyn/closer.cgi?path=roc ...

  3. Alpha Scrum Meeting汇总

    第一次Alpha Scrum Meeting 第二次Alpha Scrum Meeting 第三次Alpha Scrum Meeting 第四次Alpha Scrum Meeting 第五次Alpha ...

  4. 使用cerebro可视化ElasticSearch集群信息

    使用cerebro可视化ElasticSearch集群信息 一.背景 二.安装步骤 1.下载并解压 2.配置cerebro 3.启动 cerebro 4.启动界面 三.注意事项 四.参考文档 一.背景 ...

  5. 使用flink实现一个简单的wordcount

    使用flink实现一个简单的wordcount 一.背景 二.需求 三.前置条件 1.jdk版本要求 2.maven版本要求 四.实现步骤 1.创建 flink 项目 2.编写程序步骤 1.创建Str ...

  6. Noip模拟83 2021.10.26

    T1 树上的数 有手就能在衡中$OJ$上过,但是$WaitingCoders$不行,就是这样 必须使用$O(n)$算法加上大力卡常,思路就是找子树内没更新的更新,更新过了直接$return$ 1 #i ...

  7. 它说你的代码有 Bug「GitHub 热点速览 v.21.44」

    作者:HelloGitHub-小鱼干 本周热点上的榜单大多数提升工作效率的实用工具,像是一个 API 管理所有通知消息(包括推送.邮件-)的 notifire,再是高速解析 JSON 文件的 simd ...

  8. linux 安装rabbitmq

    1.安装rabbitmq会依赖erlang.socat.unixodbc 下载 unixODBC-2.3.7.tar.gz ,创建路径/usr/local/unixODBC-2.3.7,解压到该路径下 ...

  9. 从零开始,无DNS vcenter 6.7 vmotion热迁移,存储集群部署文档。

    1,环境准备 准备:Vmware workstation环境 IP地址段规划 ESXI主机IP地址段 192.168.197.4-192.168.197.10 Vcenter Server集群IP地址 ...

  10. 面试题系列:用了这么多年的 Java 泛型,我竟然只知道它的皮毛

    面试题:说说你对泛型的理解? 面试考察点 考察目的:了解求职者对于Java基础知识的掌握程度. 考察范围:工作1-3年的Java程序员. 背景知识 Java中的泛型,是JDK5引入的一个新特性. 它主 ...