【机器学习与R语言】5-规则学习算法
1.分类规则原理
- if-else逻辑:前件由特征值的特定组合构成,在满足规则的条件下,后件描述用来指定的分类值。
- 决策树必须从上至下应用,而规则是单独存在的事实。通常比决策树更简洁、直接和理解。
- 规则学习应用于以名义特征为主,或全部是名义特征的问题。
- “独立而治之”:与决策树的“分而治之”不同(每个决策节点会受到过去决策历史的影响),一旦规则学习算法分离出一组案例,下一组案例可能会根据完全不同的特征,以完全不同的顺序分离出来。如:所有动物——>if有皮毛(哺乳动物),else无皮毛(非哺乳)
- 分而治之和独立而治之(覆盖算法)都基于先到先得的思想,称为贪婪/学习算法。
1.1 1R单规则算法
- ZeroR:无规则算法,即无需考虑特征值就能预测为最常见的类(忽略所有特征,只是预测目标的模式)。
- 1R/OneR:单规则算法,通过选择一个单一的规则来提高ZeroR算法的性能。简单规则通常极具预测性,它能够识别对于目标类最具有预测性的单一特征,并利用该特征构建一个规则集。
过程:对于每一个特征,基于相似的特征值1R对数据分组,然后对于每个书分组,该算法的预测类为占多数的类。比如动物分类中若以行走途径为规则错误率为2/15,若以是否有皮毛为规则错误率为3/15,因此1R算法基于以行走途径为规则返回结果。
注意:如果分类水平分布很不均匀,规则学习再预测少数类时会有困难。
单一的规则可能太简单了(大拇指规则),更复杂的任务需要考虑多个属性,用到更高级的规则学习算法,但早期这类算法非常慢,也不准确,因此陆续提出了IREP、RIPPER、IRPE++、SLIPPER、TRIPPER等算法来提高规则学习的性能。
1.2 RIPPER算法
- RIPPER:重复增量修剪算法,对IREP(增量减少误差修剪算法)进行改进后再生成规则,性能与决策树相当。
- RIPPER过程:生长——修剪——优化
- 分类规则也可以直接从决策树获得。即嵌套if-else结构。缺点:这样产生的规则比从规则学习算法学到的规则更复杂,分而治之策略是有偏的,与规则学习的结果会不同。
2. 规则学习应用示例
应用规则学习识别有毒的蘑菇
1)收集数据
8124个蘑菇案例的22个特征,额外一列包含有毒和无毒信息。
数据下载:
链接: https://pan.baidu.com/s/1nrLEXkdISPSn1DLkjaPbMA 提取码: mhvr
2)探索和准备数据
## Example: Identifying Poisonous Mushrooms ----
## Step 2: Exploring and preparing the data ----
mushrooms <- read.csv("mushrooms.csv", stringsAsFactors = TRUE)
# examine the structure of the data frame
str(mushrooms)
# drop the veil_type feature
mushrooms$veil_type <- NULL
# examine the class distribution
table(mushrooms$type)
3)训练数据
## Step 3: Training a model on the data ----
library(RWeka)
# train OneR() on the data
mushroom_1R <- OneR(type ~ ., data = mushrooms)
mushroom_1R
4)评估性能
## Step 4: Evaluating model performance ----
summary(mushroom_1R)
准确率能达到98%以上,但错过了120种可以食用的蘑菇。
5)提高性能
训练JRip规则算法,从所有的可用特征中选择规则:
## Step 5: Improving model performance ----
mushroom_JRip <- JRip(type ~ ., data = mushrooms)
mushroom_JRip
summary(mushroom_JRip)
JRip分类器学习了9条规则。准确度提高到100%。
6)选择决策树中的分类规则
看一下,选择了两个特征,比较比较。
# Rule Learner Using C5.0 Decision Trees (not in text)
library(C50)
mushroom_c5rules <- C5.0(type ~ odor + gill_size, data = mushrooms, rules = TRUE) #rules分类规则生成一个模型
summary(mushroom_c5rules)
和1R算法的结果一样。
机器学习与R语言系列推文汇总:
【机器学习与R语言】1-机器学习简介
【机器学习与R语言】2-K近邻(kNN)
【机器学习与R语言】3-朴素贝叶斯(NB)
【机器学习与R语言】4-决策树
【机器学习与R语言】5-规则学习
【机器学习与R语言】6-线性回归
【机器学习与R语言】7-回归树和模型树
【机器学习与R语言】8-神经网络
【机器学习与R语言】9-支持向量机
【机器学习与R语言】10-关联规则
【机器学习与R语言】11-Kmeans聚类
【机器学习与R语言】12-如何评估模型的性能?
【机器学习与R语言】13-如何提高模型的性能?
【机器学习与R语言】5-规则学习算法的更多相关文章
- 【机器学习与R语言】13- 如何提高模型的性能?
目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 ...
- 【机器学习与R语言】12- 如何评估模型的性能?
目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化(ROC曲线) 2.评估未来的 ...
- 【机器学习与R语言】11- Kmeans聚类
目录 1.理解Kmeans聚类 1)基本概念 2)kmeans运作的基本原理 2.Kmeans聚类应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解Km ...
- 【机器学习与R语言】10- 关联规则
目录 1.理解关联规则 1)基本认识 2)Apriori算法 2.关联规则应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解关联规则 1)基本认识 购物 ...
- 【机器学习与R语言】9- 支持向量机
目录 1.理解支持向量机(SVM) 1)SVM特点 2)用超平面分类 3)对非线性空间使用核函数 2. 支持向量机应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高性能 ...
- 【机器学习与R语言】8- 神经网络
目录 1.理解神经网络 1)基本概念 2)激活函数 3)网络拓扑 4)训练算法 2.神经网络应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高性能 1.理解神经网络 1) ...
- 【机器学习与R语言】7-回归树和模型树
目录 1.理解回归树和模型树 2.回归树和模型树应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理解回归树和模型树 决策树用于数值预测: 回归树:基于到达 ...
- 【机器学习与R语言】4-决策树
目录 1.决策树原理 2.决策树应用示例 2.1)收集数据 2.2)探索和准备数据 2.3)训练模型 2.4)评估模型性能 2.5)提高模型性能 通过自适应增强算法(boosting) 将惩罚因子分配 ...
- 【机器学习与R语言】3-概率学习朴素贝叶斯(NB)
目录 1.理解朴素贝叶斯 1)基本概念 2)朴素贝叶斯算法 2.朴素贝斯分类应用 1)收集数据 2)探索和准备数据 3)训练模型 4)评估模型性能 5)提升模型性能 1.理解朴素贝叶斯 1)基本概念 ...
随机推荐
- 6月6日 Scrum Meeting
日期:2021年6月6日 会议主要内容概述: 删除模板选择页面,画图页面新增模板选择 保存时后端判重 后端要新增数据分享url 主题色->lxd:画图教程->lsp:表格数据分析-> ...
- 了解 js 堆内存 、栈内存 。
js中的堆内存与栈内存 在js引擎中对变量的存储主要有两种位置,堆内存和栈内存. 和java中对内存的处理类似,栈内存主要用于存储各种基本类型的变量,包括Boolean.Number.String.U ...
- 表单编辑时el-form的validate方法执行无效,阻塞代码运行 - Element UI踩坑记录
今天在用element-ui写管理后台需求时,遇到一个奇怪的问题 一个正常带校验的表单,在新增列表数据时表单校验功能正常: 但是在新增之后再去编辑数据时,表单校验却失效了,甚至阻塞了后续的代码执行,控 ...
- 「刷题」THUPC泛做
刷了一下,写一下. T1. 天天爱射击 可以这样想. 我们二分一下每一块木板在什么时刻被击碎. 然后直接用主席树维护的话是\(O(nlog^2n)\)的. 会\(T\),而且是一分不给那种... 那么 ...
- STM32 禁用或开启总中断
今天把之前自己的一些在中断方面所产生的疑惑把具体的解决办法给大家分享一下,希望能够帮到大家. STM32在使用时有时需要禁用全局中断,比如MCU在升级过程中需禁用外部中断,防止升级过程中外部中断触发导 ...
- 攻防世界 杂项 3.神奇的Modbus
[目标] 了解modbus协议 [工具] Wireshark [分析过程] 在数据包中寻找flag就行,flag是明文形式存储. 工业设备消息传输使用modbus协议.所以我就采集了modbus的通信 ...
- 【做题记录】[NOIP2011 提高组] 观光公交
P1315 [NOIP2011 提高组] 观光公交 我们想在 \(k\) 次加速每一次都取当前最优的方案加速. 考虑怎样计算对于每一条边如果在当前情况下使用加速器能够使答案减少的大小. 如果当前到达某 ...
- EasyX安装教程
Easyx是什么 就是一款可以在Windows里让你的C++程序里显示图片等的工具. 注意:EasyX不支持Linux.MacOS.不过还有Qt等可以选择. 安装VC/VS Easyx只支持Visua ...
- 『学了就忘』Linux基础 — 13、Linux系统的分区和格式化
目录 1.Linux系统的分区 (1)磁盘分区定义 (2)两种分区表形式 (3)MBR分区类型 2.Linux系统的格式化 (1)格式化定义 (2)格式化说明 1.Linux系统的分区 (1)磁盘分区 ...
- 使用getopt 解析参数
getopt被用来解析命令行选项参数. #include <unistd.h> extern char *optarg; //选项的参数指针 extern int optind, //下一 ...