Parallel NetCDF 简介
Parallel NetCDF API
- 所有C接口前加
ncmpi前缀,Fortran接口前加nfmpi前缀 - 函数返回整数 NetCDF 状态变量
1. Variable and Parameter Types
函数采用MPI_Offset类型来表示大小参数,与size_t相比(32-bit)MPI_Offset为64位变量,表示数据几乎不受限制。
有关变量起始下标编号start,各个维度长度count,及间隔大小stride等标量或向量都需定义为MPI_Offset类型。
2. Dataset Functions
ncmpi_create与ncmpi_open函数多了一个附加参数MPI_Info,这个参数主要用于传递提示变量。调用时传递MPI_INFO_NULL则可以忽略此功能。
int ncmpi_create(MPI_Comm comm,
const char *path,
int cmode,
MPI_Info info,
int *ncidp)
int ncmpi_open(MPI_Comm comm,
const char *path,
int omode,
MPI_Info info,
int *ncidp)
3. Define Mode Functions
所有进程必须采用相同值调用这类函数,在定义结束后,所有进程定义内容会进行检查与比较。若其不相同,函数ncmpi_enddef会返回错误代码。
4. Inquiry Functions
Inquiry函数可以在定义模式(define mode)或数据模式(data mode)下被调用。
5. Attribute Functions
Attributes(属性)主要在NetCDF中储存标量或是向量来描述变量。
在原始接口中,attribute函数可以在定义模式或数据模式下调用;然而,在数据模式状态下修改attributes的值有可能会失败。主要由于文件所需空间可能会改变。
6. Data Mode Functions
数据模式(data mode)可分为两个状态:总体模式(collective mode)与独立模式(independent mode)。当用户调用ncmpi_enddef或ncmpi_open后,文件自动进入总体模式。
在总体模式内,所有进程必须在代码相同位置调用相同的函数。调用参数如 start,count,stride 等则可以不同;在独立模式内,进程不必共同调用API。
在定义状态(define mode)下不能进入独立模式,需要首先调用ncmpi_enddef来离开定义状态随后进入数据模式。
数据模式函数分为两类。第一类模仿传统的NetCDF函数并且将其简单的又传统NetCDF接口迁移成为并行NetCDF函数接口。我们称这类数据接口为高级数据模式接口(high level data mode interface)。
第二个类函数使用更多的MPI功能来提供更好的处理内部数据,并且更充分地展示MPI-IO处理应用程序的能力。所有的第一类函数将按照这类函数实现。我们这类称为灵活数据模式接口(flexible data mode interface)。
在两类函数中,都提供了包括独立模式与总体模式操作。总体模式函数名后以_all结尾。所有这些进程必须同时调用该函数。
6.1. High Level Data Mode Interface
每个独立函数都类似于NetCDF数据模式接口。主要变化就是使用MPI_Offset代替size_t类型数据。
ncmpi_put_var_<type>将变量所有值写入Netcdf文件;ncmpi_put_vara_<type>写入数据部分由start向量指定起始位置,count指定各维度长度;ncmpi_put_vars_<type>写入数据部分由start向量指定起始位置,count指定各维度长度,stride指定各维度间隔;ncmpi_put_varm_<type>
6.2. Flexible Data Mode Interface
6.3. Mapping Between NetCDF and MPI Types
7. Q & A
For more details, please refer to Parallel netCDF Q&A
Q: How do I use the buffered nonblocking write APIs?
A: Buffered nonblocking write APIs copy the contents of user buffers into an internally allocated buffer, so the user buffers can be reused immediately after the calls return. A typical way to use these APIs is described below.
- First, tell PnetCDF how much space can be allocated to be used by the APIs.
- Make calls to the buffered put APIs.
- Make calls to the (collective) wait APIs.
- Free the space allocated by the internal buffer.
For further information about the buffered nonblocking APIs, readers are referred to this page.
Q: What is the difference between collective and independent APIs?
A: Collective APIs requires all MPI processes to participate the call. This requirement allows MPI-IO and PnetCDF to coordinate the I/O requesting processes to rearrange requests into a form that can achieve the best performance from the underlying file system. On the contrary, independent APIs (also referred as non-collective) has no such requirement. All PnetCDF collective APIs (except create, open, and close) have a suffix of _all, corresponding to their independent counterparts. To switch from collective data mode to independent mode, users must call ncmpi_begin_indep_data. API ncmpi_begin_indep_data is to exit the independent mode.
Q: Should I use collective APIs or independent APIs?
A: Users are encouraged to use collective APIs whenever possible. Collective API calls require the participation of all MPI processes that open the shared file. This requirement allows MPI-IO and PnetCDF to coordinate the I/O requesting processes to rearrange requests into a form that can achieve the best performance from the underlying file system. If the nature of user's I/O does not permit to call collective APIs (such as the number of requests are not equal among processes, or is determined at the run time), then we recommend the followings.
- Force all the processes participate the collective calls. When a process has nothing to request, users can still call a collective API with zero-length request. This is achieved by set the contents of argument count to zero.
- Use nonblocking APIs. Individual processes can make any number of calls to nonblocking APIs independently from other processes. At the end, a collective wait API,
ncmpi_wait_all, is recommended to used to allow all nonblocking requests to commit to the file system.
总结:推荐使用集合接口(collective APIs),不适用也尽量使。
8. Example
/*********************************************************************
*
* Copyright (C) 2012, Northwestern University and Argonne National Laboratory
* See COPYRIGHT notice in top-level directory.
*
*********************************************************************/
/* $Id$ */
/* simple demonstration of pnetcdf
* text attribute on dataset
* write out rank into 1-d array collectively.
* The most basic way to do parallel i/o with pnetcdf */
/* This program creates a file, say named output.nc, with the following
contents, shown by running ncmpidump command .
% mpiexec -n 4 pnetcdf-write-standard /orangefs/wkliao/output.nc
% ncmpidump /orangefs/wkliao/output.nc
netcdf output {
// file format: CDF-2 (large file)
dimensions:
d1 = 4 ;
time = UNLIMITED ; // (2 currently)
variables:
int v1(time, d1) ;
int v2(d1) ;
// global attributes:
:string = "Hello World\n",
"" ;
data:
v1 =
0, 1, 2, 3,
1, 2, 3, 4 ;
v2 = 0, 1, 2, 3 ;
}
*/
#include <stdlib.h>
#include <mpi.h>
#include <pnetcdf.h>
#include <stdio.h>
static void handle_error(int status, int lineno)
{
fprintf(stderr, "Error at line %d: %s\n", lineno, ncmpi_strerror(status));
MPI_Abort(MPI_COMM_WORLD, 1);
}
int main(int argc, char **argv) {
int ret, ncfile, nprocs, rank, dimid1, dimid2, varid1, varid2, ndims;
MPI_Offset start, count=1;
int t, i;
int v1_dimid[2];
MPI_Offset v1_start[2], v1_count[2];
int v1_data[4];
char buf[13] = "Hello World\n";
int data;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
if (argc != 2) {
if (rank == 0) printf("Usage: %s filename\n", argv[0]);
MPI_Finalize();
exit(-1);
}
ret = ncmpi_create(MPI_COMM_WORLD, argv[1],
NC_CLOBBER, MPI_INFO_NULL, &ncfile);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
ret = ncmpi_def_dim(ncfile, "d1", nprocs, &dimid1);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
ret = ncmpi_def_dim(ncfile, "time", NC_UNLIMITED, &dimid2);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
v1_dimid[0] = dimid2;
v1_dimid[1] = dimid1;
ndims = 2;
ret = ncmpi_def_var(ncfile, "v1", NC_INT, ndims, v1_dimid, &varid1);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
ndims = 1;
ret = ncmpi_def_var(ncfile, "v2", NC_INT, ndims, &dimid1, &varid2);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
ret = ncmpi_put_att_text(ncfile, NC_GLOBAL, "string", 13, buf);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
/* all processors defined the dimensions, attributes, and variables,
* but here in ncmpi_enddef is the one place where metadata I/O
* happens. Behind the scenes, rank 0 takes the information and writes
* the netcdf header. All processes communicate to ensure they have
* the same (cached) view of the dataset */
ret = ncmpi_enddef(ncfile);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
start=rank, count=1, data=rank;
ret = ncmpi_put_vara_int_all(ncfile, varid2, &start, &count, &data);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
for (t = 0; t<2; t++){
v1_start[0] = t, v1_start[1] = rank;
v1_count[0] = 1, v1_count[1] = 1;
for (i = 0; i<4; i++){
v1_data[i] = rank+t;
}
/* in this simple example every process writes its rank to two 1d variables */
ret = ncmpi_put_vara_int_all(ncfile, varid1, v1_start, v1_count, v1_data);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
}
ret = ncmpi_close(ncfile);
if (ret != NC_NOERR) handle_error(ret, __LINE__);
MPI_Finalize();
return 0;
}
Parallel NetCDF 简介的更多相关文章
- 痞子衡嵌入式:通用NOR接口标准(CFI-JESD68)及SLC Parallel NOR简介
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是CFI标准及SLC Parallel NOR. NOR Flash是嵌入式世界里最常见的存储器,常常内嵌在微控制器里(Parallel型 ...
- 痞子衡嵌入式:飞思卡尔i.MX RT系列MCU启动那些事(9)- 从Parallel NOR启动
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是飞思卡尔i.MX RT系列MCU的Parallel NOR启动. 上一篇讲i.MXRT从Raw NAND启动的文章 从Raw NAND启 ...
- 痞子衡嵌入式:串行EEPROM接口事实标准及SPI EEPROM简介
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是EEPROM接口标准及SPI EEPROM. 痞子衡之前写过一篇文章 <SLC Parallel NOR简介>,介绍过并行N ...
- 痞子衡嵌入式:飞思卡尔i.MX RT系列MCU开发那些事 - 索引
大家好,我是痞子衡,是正经搞技术的痞子.本系列痞子衡给大家介绍的是飞思卡尔i.MX RT系列微控制器相关知识. 飞思卡尔半导体(现恩智浦半导体)于2017年开始推出的i.MX RT系列开启了高性能MC ...
- CESM部署安装环境和使用
平台信息 Description: CentOS Linux release 7.6.1810 (Core) 安装CESM 安装前提:(小提示:耗时较长,需要耐心)阅读原文 CentOS 7(检查:s ...
- .NET异步程序设计之任务并行库
目录 1.简介 2.Parallel类 2.0 Parallel类简介 2.1 Parallel.For() 2.2 Parallel.ForEach() 2.3 Parallel.Invoke() ...
- R︱并行计算以及提高运算效率的方式(parallel包、clusterExport函数、SupR包简介)
要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 终于开始攻克并行这一块了,有点小兴 ...
- 比特币_Bitcoin 简介
2008-11 Satoshi Nakamoto Bitcoin: A Peer-to-Peer Electronic Cash System http://p2pbucks.com/?p=99 ...
- [译]何时使用 Parallel.ForEach,何时使用 PLINQ
原作者: Pamela Vagata, Parallel Computing Platform Group, Microsoft Corporation 原文pdf:http://download.c ...
随机推荐
- UltraSoft - DDL Killer - Alpha 项目展示
团队介绍 CookieLau fmh 王 FUJI LZH DZ Monster PM & 后端 前端 前端 前端 后端 后端 软件介绍 项目简介 项目名称:DDLKiller 项目描述:&q ...
- Canal的简单使用
Canal的简单实用 一.背景 二.canal的工作原理 三.安装canal 1.mysql配置相关 1.检测binlog是否开启 2.mysql开启binlog 3.创建canal用户 2.cana ...
- Noip模拟7 2021.6.11
前言 考试时候der展了,T1kmp没特判(看来以后还是能hash就hash),T2搜索细节没注意,ans没清零,130飞到14.... T1 匹配(hash/kmp) 这太水了,其实用个hash随便 ...
- PWN学习之整数溢出
目录 PWN学习之整数溢出 整数溢出 溢出和回绕 漏洞多发函数 整数溢出例子 PWN学习之整数溢出 整数溢出 如果一个整数用来计算一些敏感数值,如缓冲区大小或数值索引,就会产生潜在的危险.通常情况下, ...
- Loto实践干货(8)loto示波器在LED台灯调光问题维修中的应用案例
Loto实践干货(8)loto示波器在LED台灯调光问题维修中的应用案例 一位客户最近觉得觉得他的LED台灯好闪, 于是拆了看看,里面的控制板是这样的: 干掉双色调光功能,只调亮度的话闪烁的状况能好转 ...
- Jenkins 邮件发送
1.jenkins新建任务 2.配置svn 3.maven项目构建配置pom.xml 使用maven命令 clean test 构建前清除: 4.系统管理 => 插件管理 =>可选安装邮件 ...
- vm workstation pro 安装centos7
workstation pro 下载地址 划到页面下方点击下载 安装教程 激活码 16版本 ZF3R0-FHED2-M80TY-8QYGC-NPKYF 15版本 FG78K-0UZ15-085TQ-T ...
- go 集合
p.p1 { margin: 0; font: 12px ".PingFang SC"; color: rgba(69, 69, 69, 1) } span.s1 { font: ...
- C# for Beginner Part 21 to 30
Part 21 Inheritance in c# Why Inheritance Pillars(支架) of Object Oriented Programming 1,Inheritance(继 ...
- go 错误处理设计思考
前段时间准备对线上一个golang系统服务进行内部开源,对代码里面的错误处理进行了一波优化. 优化的几个原因: 错误处理信息随意,未分类未定义.看到错误日志不能第一时间定位 错误的日志重复,有时候一个 ...