1170 - Counting Perfect BST
Time Limit: 2 second(s) Memory Limit: 32 MB

BST is the acronym for Binary Search Tree. A BST is a tree data structure with the following properties.

i)        Each BST contains a root node and the root may have zero, one or two children. Each of the children themselves forms the root of another BST. The two children are classically referred to as left child and right child.

ii)      The left subtree, whose root is the left children of a root, contains all elements with key values less than or equal to that of the root.

iii)    The right subtree, whose root is the right children of a root, contains all elements with key values greater than that of the root.

An integer m is said to be a perfect power if there exists integer x > 1 and y > 1 such that m = xy. First few perfect powers are {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, ...}. Now given two integer a and b we want to construct BST using all perfect powers between a and b, where each perfect power will form the key value of a node.

Now, we can construct several BSTs out of the perfect powers. For example, given a = 1 and b = 10, perfect powers between a and b are 4, 8, 9. Using these we can form the following five BSTs.

4           4         8          9         9

  \          \      / \      /         /

    8          9   4     9   4         8

      \      /                 \      /

9   8                     8   4

In this problem, given a and b, you will have to determine the total number of BSTs that can be formed using perfect powers between a and b.

Input

Input starts with an integer T (≤ 20000), denoting the number of test cases.

Each case of input contains two integers: a and b (1 ≤ a ≤ b ≤ 1010, b - a ≤ 106) as defined in the problem statement.

Output

For each case, print the case number and the total number of distinct BSTs that can be formed by the perfect powers between a and b. Output the result modulo 100000007.

Sample Input

Output for Sample Input

4

1 4

5 10

1 10

1 3

Case 1: 1

Case 2: 2

Case 3: 5

Case 4: 0


Problem Setter: Shamim Hafiz
Special Thanks: Jane Alam Jan
题意:给定一个区间范围a,b,a,b内所以可以表示为x^y的数字可以组成的二叉排序树有多少种;
思路:n个节点能够成的二叉排序树种类是卡特兰数;
定义一个数是基,当且仅当这个数不是另一个数的幂次方。我们可以在近似O(nlogn)的时间内找出[1,100000]内的所有的基。

然后对于每一个幂次k,通过二分找出x^k 在所给范围内的基的个数,累加即可求得。

卡特兰数打表就行,要用费马小定理求逆元。

  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stdlib.h>
7 #include<math.h>
8 #include<stack>
9 using namespace std;
10 typedef unsigned long long LL;
11 bool pr[100005];
12 int ans[100005];
13 LL KTL[1000006];
14 const int N=1e8+7;
15 LL quick(LL n,LL m)
16 {
17 LL ak=1;
18 while(m)
19 {
20 if(m&1)
21 {
22 ak=(ak*n)%N;
23 }
24 n=(n*n)%N;
25 m/=2;
26 }
27 return ak;
28 }
29 LL qu(LL n,LL m,LL ask)
30 {
31 LL ak=1;
32 while(m)
33 {
34 if(m&1)
35 {
36 ak*=n;
37 if(ak>ask)
38 return 0;
39 }
40 n*=n;
41 if(n>ask&&m!=1)return 0;
42 m/=2;
43 }
44 if(ak<=ask)
45 {
46 return 1;
47 }
48 }
49 LL qu1(LL n,LL m, LL ac)
50 {
51 LL ak=1;
52 while(m)
53 {
54 if(m&1)
55 {
56 ak*=n;
57 if(ak>ac)
58 {
59 return 1;
60 }
61 }
62 n*=n;
63 if(n>ac&&m!=1)return 1;
64 m/=2;
65 }
66 if(ak<ac)
67 {
68 return 0;
69 }
70 else return 1;
71 }
72 int main(void)
73 {
74 int i,j,k;
75 scanf("%d",&k);
76 int s;
77 LL n,m;
78 memset(pr,0,sizeof(pr));
79 for(i=2; i<1000; i++)
80 {
81 if(!pr[i])
82 {
83 for(j=i; i*j<=100000; j*=i)
84 {
85 pr[i*j]=true;
86 }
87 }
88 }
89 int cnt=0;
90 for(i=2; i<=100000; i++)
91 {
92 if(!pr[i])
93 {
94 ans[cnt++]=i;
95 }
96 }
97 KTL[1]=1;
98 KTL[2]=2;
99 KTL[3]=5;
100 for(i=4; i<=1000000; i++)
101 {
102 KTL[i]=KTL[i-1]*(4*i-2)%N;
103 KTL[i]=KTL[i]*(quick((LL)(i+1),(LL)(N-2)))%N;
104 }
105 for(s=1; s<=k; s++)
106 {
107 int sum=0;
108 scanf("%lld %lld",&n,&m);
109 for(i=2; i<=34; i++)
110 {
111 int l=0;
112 int r=cnt-1;
113 int id=-1;
114 while(l<=r)
115 {
116 int mid=(l+r)/2;
117 int flag=qu((LL)ans[mid],(LL)i,m);
118 if(flag)
119 {
120 id=mid;
121 l=mid+1;
122 }
123 else r=mid-1;
124 }
125 l=0;
126 r=cnt-1;
127 int id1=-1;
128 while(l<=r)
129 {
130 int mid=(l+r)/2;
131 int flag=qu1((LL)ans[mid],(LL)i,n);
132 if(flag)
133 {
134 id1=mid;
135 r=mid-1;
136 }
137 else l=mid+1;
138 }
139
140 if(id1<=id&&id!=-1)sum+=id-id1+1;
141 }
142 printf("Case %d: ",s);
143 printf("%lld\n",KTL[sum]);
144
145 }
146 return 0;
147 }

1170 - Counting Perfect BST的更多相关文章

  1. LightOJ - 1170 - Counting Perfect BST(卡特兰数)

    链接: https://vjudge.net/problem/LightOJ-1170 题意: BST is the acronym for Binary Search Tree. A BST is ...

  2. LightOj 1170 - Counting Perfect BST (折半枚举 + 卡特兰树)

    题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1170 题目描述: 给出一些满足完美性质的一列数(x > 1 and y ...

  3. light oj1170 - Counting Perfect BST卡特兰数

    1170 - Counting Perfect BST BST is the acronym for Binary Search Tree. A BST is a tree data structur ...

  4. LightOJ1170 - Counting Perfect BST(卡特兰数)

    题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...

  5. PAT1115:Counting Nodes in a BST

    1115. Counting Nodes in a BST (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  6. PAT甲1115 Counting Nodes in a BST【dfs】

    1115 Counting Nodes in a BST (30 分) A Binary Search Tree (BST) is recursively defined as a binary tr ...

  7. 1115 Counting Nodes in a BST (30 分)

    1115 Counting Nodes in a BST (30 分) A Binary Search Tree (BST) is recursively defined as a binary tr ...

  8. UVALive 5058 Counting BST 数学

    B - Counting BST Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit S ...

  9. [二叉查找树] 1115. Counting Nodes in a BST (30)

    1115. Counting Nodes in a BST (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

随机推荐

  1. Hadoop入门 概念

    Hadoop是分布式系统基础架构,通常指Hadoop生态圈 主要解决 1.海量数据的存储 2.海量数据的分析计算 优势 高可靠性:Hadoop底层维护多个数据副本,即使Hadoop某个计算元素或存储出 ...

  2. MapReduce07 Join多种应用

    目录 1 Join多种应用 1.1 Reduce Join 1.2 Reduce Join实例实操 需求 需求分析 Map数据处理 Reduce端合并(数据倾斜) 代码实现 JoinBean类 Joi ...

  3. Hadoop org.apache.hadoop.util.DiskChecker$DiskErrorException问题等价解决linux磁盘不足解决问题排查

    org.apache.hadoop.util.DiskChecker$DiskErrorException问题等价解决linux磁盘不足解决问题排查 解决"/dev/mapper/cento ...

  4. 高效读取大文件,再也不用担心 OOM 了!

    内存读取 第一个版本,采用内存读取的方式,所有的数据首先读读取到内存中,程序代码如下: Stopwatch stopwatch = Stopwatch.createStarted(); // 将全部行 ...

  5. 转 Android Monkey压力测试使用

    转自:https://www.jianshu.com/p/c8844327f5e9 一.Monkey简介: Monkey是Android中的一个命令行工具,可以运行在模拟器里或者现实设备中,向系统发送 ...

  6. AI ubantu 环境安装

    ubantu安装记录 apt install python3-pip anaconda安装 https://repo.anaconda.com/archive/Anaconda3-2020.11-Li ...

  7. 颜色RGB值对照表

    转载自 http://www.91dota.com/?p=49# 常用颜色的RGB值及中英文名称   颜  色    RGB值 英文名 中文名   #FFB6C1 LightPink 浅粉红   #F ...

  8. Linux基础命令---mysqlshow显示数据库

    mysqlshow mysqlshow是一个客户端的程序,它可以显示数据库的信息.表信息.字段信息. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法 ...

  9. 查看IP访问量的shell脚本汇总

    第一部分,1,查看TCP连接状态 netstat -nat |awk '{print $6}'|sort|uniq -c|sort -rn netstat -n | awk '/^tcp/ {++S[ ...

  10. 理解css中的 content:" " 是什么意思

    css中的属性是插入生成的内容,它一般与伪元素:befor和 :after 配合使用. content:"." 就表示在需要的地方插入"." 注意:如果已经规定 ...