1170 - Counting Perfect BST
| Time Limit: 2 second(s) | Memory Limit: 32 MB | 
BST is the acronym for Binary Search Tree. A BST is a tree data structure with the following properties.
i) Each BST contains a root node and the root may have zero, one or two children. Each of the children themselves forms the root of another BST. The two children are classically referred to as left child and right child.
ii) The left subtree, whose root is the left children of a root, contains all elements with key values less than or equal to that of the root.
iii) The right subtree, whose root is the right children of a root, contains all elements with key values greater than that of the root.
An integer m is said to be a perfect power if there exists integer x > 1 and y > 1 such that m = xy. First few perfect powers are {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, ...}. Now given two integer a and b we want to construct BST using all perfect powers between a and b, where each perfect power will form the key value of a node.
Now, we can construct several BSTs out of the perfect powers. For example, given a = 1 and b = 10, perfect powers between a and b are 4, 8, 9. Using these we can form the following five BSTs.
4 4 8 9 9
\ \ / \ / /
8 9 4 9 4 8
\ / \ /
9 8 8 4
In this problem, given a and b, you will have to determine the total number of BSTs that can be formed using perfect powers between a and b.
Input
Input starts with an integer T (≤ 20000), denoting the number of test cases.
Each case of input contains two integers: a and b (1 ≤ a ≤ b ≤ 1010, b - a ≤ 106) as defined in the problem statement.
Output
For each case, print the case number and the total number of distinct BSTs that can be formed by the perfect powers between a and b. Output the result modulo 100000007.
Sample Input | 
Output for Sample Input | 
| 
 4 1 4 5 10 1 10 1 3  | 
 Case 1: 1 Case 2: 2 Case 3: 5 Case 4: 0  | 
然后对于每一个幂次k,通过二分找出x^k 在所给范围内的基的个数,累加即可求得。
卡特兰数打表就行,要用费马小定理求逆元。
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stdlib.h>
7 #include<math.h>
8 #include<stack>
9 using namespace std;
10 typedef unsigned long long LL;
11 bool pr[100005];
12 int ans[100005];
13 LL KTL[1000006];
14 const int N=1e8+7;
15 LL quick(LL n,LL m)
16 {
17 LL ak=1;
18 while(m)
19 {
20 if(m&1)
21 {
22 ak=(ak*n)%N;
23 }
24 n=(n*n)%N;
25 m/=2;
26 }
27 return ak;
28 }
29 LL qu(LL n,LL m,LL ask)
30 {
31 LL ak=1;
32 while(m)
33 {
34 if(m&1)
35 {
36 ak*=n;
37 if(ak>ask)
38 return 0;
39 }
40 n*=n;
41 if(n>ask&&m!=1)return 0;
42 m/=2;
43 }
44 if(ak<=ask)
45 {
46 return 1;
47 }
48 }
49 LL qu1(LL n,LL m, LL ac)
50 {
51 LL ak=1;
52 while(m)
53 {
54 if(m&1)
55 {
56 ak*=n;
57 if(ak>ac)
58 {
59 return 1;
60 }
61 }
62 n*=n;
63 if(n>ac&&m!=1)return 1;
64 m/=2;
65 }
66 if(ak<ac)
67 {
68 return 0;
69 }
70 else return 1;
71 }
72 int main(void)
73 {
74 int i,j,k;
75 scanf("%d",&k);
76 int s;
77 LL n,m;
78 memset(pr,0,sizeof(pr));
79 for(i=2; i<1000; i++)
80 {
81 if(!pr[i])
82 {
83 for(j=i; i*j<=100000; j*=i)
84 {
85 pr[i*j]=true;
86 }
87 }
88 }
89 int cnt=0;
90 for(i=2; i<=100000; i++)
91 {
92 if(!pr[i])
93 {
94 ans[cnt++]=i;
95 }
96 }
97 KTL[1]=1;
98 KTL[2]=2;
99 KTL[3]=5;
100 for(i=4; i<=1000000; i++)
101 {
102 KTL[i]=KTL[i-1]*(4*i-2)%N;
103 KTL[i]=KTL[i]*(quick((LL)(i+1),(LL)(N-2)))%N;
104 }
105 for(s=1; s<=k; s++)
106 {
107 int sum=0;
108 scanf("%lld %lld",&n,&m);
109 for(i=2; i<=34; i++)
110 {
111 int l=0;
112 int r=cnt-1;
113 int id=-1;
114 while(l<=r)
115 {
116 int mid=(l+r)/2;
117 int flag=qu((LL)ans[mid],(LL)i,m);
118 if(flag)
119 {
120 id=mid;
121 l=mid+1;
122 }
123 else r=mid-1;
124 }
125 l=0;
126 r=cnt-1;
127 int id1=-1;
128 while(l<=r)
129 {
130 int mid=(l+r)/2;
131 int flag=qu1((LL)ans[mid],(LL)i,n);
132 if(flag)
133 {
134 id1=mid;
135 r=mid-1;
136 }
137 else l=mid+1;
138 }
139
140 if(id1<=id&&id!=-1)sum+=id-id1+1;
141 }
142 printf("Case %d: ",s);
143 printf("%lld\n",KTL[sum]);
144
145 }
146 return 0;
147 }
1170 - Counting Perfect BST的更多相关文章
- LightOJ - 1170 - Counting Perfect BST(卡特兰数)
		
链接: https://vjudge.net/problem/LightOJ-1170 题意: BST is the acronym for Binary Search Tree. A BST is ...
 - LightOj 1170 - Counting Perfect BST (折半枚举 + 卡特兰树)
		
题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1170 题目描述: 给出一些满足完美性质的一列数(x > 1 and y ...
 - light oj1170 - Counting Perfect BST卡特兰数
		
1170 - Counting Perfect BST BST is the acronym for Binary Search Tree. A BST is a tree data structur ...
 - LightOJ1170 - Counting Perfect BST(卡特兰数)
		
题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...
 - PAT1115:Counting Nodes in a BST
		
1115. Counting Nodes in a BST (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
 - PAT甲1115 Counting Nodes in a BST【dfs】
		
1115 Counting Nodes in a BST (30 分) A Binary Search Tree (BST) is recursively defined as a binary tr ...
 - 1115 Counting Nodes in a BST (30 分)
		
1115 Counting Nodes in a BST (30 分) A Binary Search Tree (BST) is recursively defined as a binary tr ...
 - UVALive 5058 Counting BST 数学
		
B - Counting BST Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit S ...
 - [二叉查找树] 1115. Counting Nodes in a BST (30)
		
1115. Counting Nodes in a BST (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
 
随机推荐
- react native安装遇到的问题
			
最近学习react native 是在为全栈工程师而努力,看网上把react native说的各种好,忍不住学习了一把.总体感觉还可以,特别是可以开发android和ios这点非常厉害,刚开始入门需要 ...
 - 使用C语言来扩展PHP,写PHP扩展dll
			
转自http://www.cnblogs.com/myths/archive/2011/11/28/2266593.html 以前写过一次PHP扩展DLL,那个是利用调用系统的COM口实现的扩展,与P ...
 - Oracle基础入门
			
说明:钓鱼君昨天在网上找到一份oracle项目实战的文档,粗略看了一下大致内容,感觉自己很多知识不够扎实,便跟着文档敲了一遍,目前除了机械性代码没有实现外,主要涉及知识:创建表空间.创建用户.给用户赋 ...
 - 如何使用 Kind 快速创建 K8s 集群?
			
作者|段超 来源|尔达 Erda 公众号  导读:Erda 作为一站式云原生 PaaS 平台,现已面向广大开发者完成 70w+ 核心代码全部开源!在 Erda 开源的同时,我们计划编写<基于 ...
 - [php安全]原生类的利用
			
php原生类的利用 查看原生类中具有魔法函数的类 $classes = get_declared_classes(); foreach ($classes as $class) { $methods ...
 - 使用Rapidxml重建xml树
			
需求 : 重建一棵xml树, 在重建过程中对原来的标签进行一定的修改. 具体修改部分就不给出了, 这里只提供重建部分的代码 code : /****************************** ...
 - 转 android开发笔记之handler+Runnable的一个巧妙应用
			
本文链接:https://blog.csdn.net/hfreeman2008/article/details/12118817 版权 1. 一个有趣Demo: (1)定义一个handler变量 pr ...
 - Output of C++ Program | Set 6
			
Predict the output of below C++ programs. Question 1 1 #include<iostream> 2 3 using namespace ...
 - 如何设置eclipse下查看java源码
			
windows--preferences--java--installed jres --选中jre6--点击右边的edit--选中jre6/lib/rt.jar --点击右边的 source att ...
 - ssm-book 整合案例
			
一:环境及要求 环境: IDEA最新版 MySQL 5.7.19 Tomcat 9 Maven 3.6 要求: 需要掌握 MyBatis:Spring:SpringMVC:MySQL数据库 ...