1170 - Counting Perfect BST
| Time Limit: 2 second(s) | Memory Limit: 32 MB |
BST is the acronym for Binary Search Tree. A BST is a tree data structure with the following properties.
i) Each BST contains a root node and the root may have zero, one or two children. Each of the children themselves forms the root of another BST. The two children are classically referred to as left child and right child.
ii) The left subtree, whose root is the left children of a root, contains all elements with key values less than or equal to that of the root.
iii) The right subtree, whose root is the right children of a root, contains all elements with key values greater than that of the root.
An integer m is said to be a perfect power if there exists integer x > 1 and y > 1 such that m = xy. First few perfect powers are {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, ...}. Now given two integer a and b we want to construct BST using all perfect powers between a and b, where each perfect power will form the key value of a node.
Now, we can construct several BSTs out of the perfect powers. For example, given a = 1 and b = 10, perfect powers between a and b are 4, 8, 9. Using these we can form the following five BSTs.
4 4 8 9 9
\ \ / \ / /
8 9 4 9 4 8
\ / \ /
9 8 8 4
In this problem, given a and b, you will have to determine the total number of BSTs that can be formed using perfect powers between a and b.
Input
Input starts with an integer T (≤ 20000), denoting the number of test cases.
Each case of input contains two integers: a and b (1 ≤ a ≤ b ≤ 1010, b - a ≤ 106) as defined in the problem statement.
Output
For each case, print the case number and the total number of distinct BSTs that can be formed by the perfect powers between a and b. Output the result modulo 100000007.
Sample Input |
Output for Sample Input |
|
4 1 4 5 10 1 10 1 3 |
Case 1: 1 Case 2: 2 Case 3: 5 Case 4: 0 |
然后对于每一个幂次k,通过二分找出x^k 在所给范围内的基的个数,累加即可求得。
卡特兰数打表就行,要用费马小定理求逆元。
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stdlib.h>
7 #include<math.h>
8 #include<stack>
9 using namespace std;
10 typedef unsigned long long LL;
11 bool pr[100005];
12 int ans[100005];
13 LL KTL[1000006];
14 const int N=1e8+7;
15 LL quick(LL n,LL m)
16 {
17 LL ak=1;
18 while(m)
19 {
20 if(m&1)
21 {
22 ak=(ak*n)%N;
23 }
24 n=(n*n)%N;
25 m/=2;
26 }
27 return ak;
28 }
29 LL qu(LL n,LL m,LL ask)
30 {
31 LL ak=1;
32 while(m)
33 {
34 if(m&1)
35 {
36 ak*=n;
37 if(ak>ask)
38 return 0;
39 }
40 n*=n;
41 if(n>ask&&m!=1)return 0;
42 m/=2;
43 }
44 if(ak<=ask)
45 {
46 return 1;
47 }
48 }
49 LL qu1(LL n,LL m, LL ac)
50 {
51 LL ak=1;
52 while(m)
53 {
54 if(m&1)
55 {
56 ak*=n;
57 if(ak>ac)
58 {
59 return 1;
60 }
61 }
62 n*=n;
63 if(n>ac&&m!=1)return 1;
64 m/=2;
65 }
66 if(ak<ac)
67 {
68 return 0;
69 }
70 else return 1;
71 }
72 int main(void)
73 {
74 int i,j,k;
75 scanf("%d",&k);
76 int s;
77 LL n,m;
78 memset(pr,0,sizeof(pr));
79 for(i=2; i<1000; i++)
80 {
81 if(!pr[i])
82 {
83 for(j=i; i*j<=100000; j*=i)
84 {
85 pr[i*j]=true;
86 }
87 }
88 }
89 int cnt=0;
90 for(i=2; i<=100000; i++)
91 {
92 if(!pr[i])
93 {
94 ans[cnt++]=i;
95 }
96 }
97 KTL[1]=1;
98 KTL[2]=2;
99 KTL[3]=5;
100 for(i=4; i<=1000000; i++)
101 {
102 KTL[i]=KTL[i-1]*(4*i-2)%N;
103 KTL[i]=KTL[i]*(quick((LL)(i+1),(LL)(N-2)))%N;
104 }
105 for(s=1; s<=k; s++)
106 {
107 int sum=0;
108 scanf("%lld %lld",&n,&m);
109 for(i=2; i<=34; i++)
110 {
111 int l=0;
112 int r=cnt-1;
113 int id=-1;
114 while(l<=r)
115 {
116 int mid=(l+r)/2;
117 int flag=qu((LL)ans[mid],(LL)i,m);
118 if(flag)
119 {
120 id=mid;
121 l=mid+1;
122 }
123 else r=mid-1;
124 }
125 l=0;
126 r=cnt-1;
127 int id1=-1;
128 while(l<=r)
129 {
130 int mid=(l+r)/2;
131 int flag=qu1((LL)ans[mid],(LL)i,n);
132 if(flag)
133 {
134 id1=mid;
135 r=mid-1;
136 }
137 else l=mid+1;
138 }
139
140 if(id1<=id&&id!=-1)sum+=id-id1+1;
141 }
142 printf("Case %d: ",s);
143 printf("%lld\n",KTL[sum]);
144
145 }
146 return 0;
147 }
1170 - Counting Perfect BST的更多相关文章
- LightOJ - 1170 - Counting Perfect BST(卡特兰数)
链接: https://vjudge.net/problem/LightOJ-1170 题意: BST is the acronym for Binary Search Tree. A BST is ...
- LightOj 1170 - Counting Perfect BST (折半枚举 + 卡特兰树)
题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1170 题目描述: 给出一些满足完美性质的一列数(x > 1 and y ...
- light oj1170 - Counting Perfect BST卡特兰数
1170 - Counting Perfect BST BST is the acronym for Binary Search Tree. A BST is a tree data structur ...
- LightOJ1170 - Counting Perfect BST(卡特兰数)
题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...
- PAT1115:Counting Nodes in a BST
1115. Counting Nodes in a BST (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
- PAT甲1115 Counting Nodes in a BST【dfs】
1115 Counting Nodes in a BST (30 分) A Binary Search Tree (BST) is recursively defined as a binary tr ...
- 1115 Counting Nodes in a BST (30 分)
1115 Counting Nodes in a BST (30 分) A Binary Search Tree (BST) is recursively defined as a binary tr ...
- UVALive 5058 Counting BST 数学
B - Counting BST Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit S ...
- [二叉查找树] 1115. Counting Nodes in a BST (30)
1115. Counting Nodes in a BST (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
随机推荐
- 以VuePress的v1.x为基础开发-用户手册
首先配置.vuepress中的config.js module.exports = { title:"用户手册", description: '用户手册', evergreen: ...
- 取gridview中textbox的值【C#】
<asp:GridView ID="gridView" runat="server" OnRowCommand="gridView_RowCom ...
- opencv学习(三)——绘图功能
绘图功能 我们将学习以下函数:cv.line(),cv.circle(),cv.rectangle(),cv.ellipse(),cv.putText()等. 在这些功能中,有一些相同的参数: img ...
- A Child's History of England.5
Above all, it was in the Roman time, and by means of Roman ships, that the Christian Religion was fi ...
- day05 连表查询与子查询
day05 连表查询与子查询 昨日内容回顾 表关系之一对一 换位思考之后得出两边都是不可以 要么是没有关系,要么是一对一 一对一的表关系外键虽然建在哪个都可以,但是建议建在查询频率多的表上 # 外键其 ...
- Docker学习(六)——Dockerfile文件详解
Docker学习(六)--Dockerfile文件详解 一.环境介绍 1.Dockerfile中所用的所有文件一定要和Dockerfile文件在同一级父目录下,可以为Dockerfile父目录的子目录 ...
- Java中特殊的类——包装类
Java中特殊的类--包装类 包装类就是将基本数据类型封装在类中. 1.包装类 (1)自定义包装类 将基本数据类型包装成一个类对象的本质就是使用Object进行接收处理. 此时IntDemo类就是in ...
- SpringBoot 项目不加载 application.properties 配置文件
起因:新安装的idea第一次运行springboot项目报url错误(Failed to configure a DataSource: 'url' attribute is not specifie ...
- Spring Boot 自动扫描组件
使用@ComponentScan自动扫描组件 案例准备 1.创建一个配置类,在配置类上添加 @ComponentScan 注解.该注解默认会扫描该类所在的包下所有的配置类,相当于之前的 <con ...
- 【JS】toLocaleString 日期格式,千分位转换
https://blog.csdn.net/Seven521m/article/details/108866881 类似于c里printf(m%)的意思 可以指定整数最少位数,小数最少与最多位数,有效 ...