Unsupervised Domain Adaptation by Backpropagation
Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015.
概
监督学习非常依赖标签数据, 但是获得大量的标签数据在现实中是代价昂贵的一件事情, 这也是为何半监督和无监督重要的原因.
本文提出一种利用GRL来进行domain adaptation的方法, 感觉本文的创新点还是更加偏重于结构一点.
主要内容

接下来的叙述的方式可能和原文的有一点点的出入.
首先整个网络的框架包括一个用于提取特征的\(G_f\), 可见其是共享的, 提取的到的特征会分别进入上下两个\(G_c, G_d\).
其中, \(G_c\) 是普通的分类器, 当然这要求最开始的输入我们是有对应的标签的, \(G_f + G_c\)也就是我们最后所需要的整个网络.
而\(G_d\)的最后是一个二分类器, 用于区别输入的样本是来自有标签的数据集还是目标数据集.
我们来看一下损失
\]
首先关于\(G_f, G_c\)最小化\(\mathcal{L}_y\), 关于\(G_d\)则是最小化\(\mathcal{L}_d\), 同时关于\(G_f\)最大化\(\mathcal{L}_d\).
直观上讲就是, 我们要求\(G_f\)提取的特征使得分类器能够区分出输入的类别, 而下半部分则是一种对抗的思想, \(G_f\)提取的特征希望\(G_d\)不能够区别出输入来自有标签的域还是目标域, 对应的\(G_d\)是努力去区别开来.
为了实现这一点, 本文利用了一种GRL的技术, 即梯度从\(G_d\)回传到\(G_f\)的时候会变换梯度的方向.
代码
import torch
from torch.autograd import Function
class RevGrad(Function):
@staticmethod
def forward(ctx, inputs):
return inputs
@staticmethod
def backward(ctx, grad_outputs):
return grad_outputs.neg()
Unsupervised Domain Adaptation by Backpropagation的更多相关文章
- 论文笔记:Unsupervised Domain Adaptation by Backpropagation
14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...
- Deep Transfer Network: Unsupervised Domain Adaptation
转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...
- Unsupervised Domain Adaptation Via Domain Adversarial Training For Speaker Recognition
年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.
- Domain Adaptation (3)论文翻译
Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...
- Domain Adaptation (1)选题讲解
1 所选论文 论文题目: <Unsupervised Domain Adaptation with Residual Transfer Networks> 论文信息: NIPS2016, ...
- 关于模式识别中的domain generalization 和 domain adaptation
今晚听了李文博士的报告"Domain Generalization and Adaptation using Low-Rank Examplar Classifiers",讲的很精 ...
- 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes
paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...
- 【论文笔记】Domain Adaptation via Transfer Component Analysis
论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...
- 域适应(Domain adaptation)
定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? ...
随机推荐
- 一个专业处理字符串的IDEA插件
字符串处理想必是小伙伴们平时开发时经常碰到的一个 "难题".为什么要打上引号?因为你说他难吧,其实也不是什么特别复杂的事:你说他不难吧,弄起来还真挺麻烦的,像删除其中空行啊.切换大 ...
- 日常Java 2021/9/26 (二柱升级版)
package m; import java.util.Scanner;import java.util.Random; public class di_er { static int number= ...
- 2021广东工业大学新生赛决赛 L-歪脖子树下的灯
题目:L-歪脖子树下的灯_2021年广东工业大学第11届腾讯杯新生程序设计竞赛(同步赛) (nowcoder.com) 比赛的时候没往dp这方面想(因为之前初赛和月赛数学题太多了啊),因此只往组合数学 ...
- android知识点duplicateParentState
android知识点duplicateParentState 今天要做一个效果,组件RelativeLayout上有两个TextView,这两个TextView具有不同的颜色值,现在要的效果是,当Re ...
- clickhouse客户端使用
测试初始化 clickhouse-client -m create database if not exists test; use test; drop table test; create tab ...
- 用户信息系统_serviceImpl
package com.hopetesting.service.impl;import com.hopetesting.dao.UserDao;import com.hopetesting.dao.i ...
- 南京邮电大学CTF密码学之MD5-golang与php代码实现
题目内容:这里有一段丢失的md5密文 e9032???da???08????911513?0???a2 要求你还原出他并且加上nctf{}提交 已知线索 明文为: TASC?O3RJMV?WDJKX? ...
- 【Java】【学习】【监听器】Listener的学习的案例(窗体程序)
JavaWeb 监听器listener 学习与简单应用 Java窗体程序使用监听器 效果:点击按钮,控制台出现文字 代码如下 import javax.swing.*; import java.awt ...
- C# 温故知新 第一篇 C# 与 .net 的关系
C# 与.net 的关系很多初学者或者未从事过.net 研发的编程人员 都不是很清楚,认为 C# 与.net 是一回事. 我们经常说java开发,C++开发,指的是两种开发语言:但是 经常看到 .ne ...
- 我的第一篇博客blog,笑哭
我的第一篇博客blog Markdown学习 一级标题:#加一个空格 加 文字, 二级标题:加2个##以此类推 字体 粗体:hello world!字体前有二个星号,字体后有二个星号 斜体:hello ...