Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

这一节来讲怎么结合standardization.

13.1 Standardization as an alternative to IP weighting

\[\sum_l \mathbb{E}[Y|A=a, C=0, L=l] \times \mathrm{Pr}[L=l].
\]

13.2 Estimating the mean outcome via modeling

当数据的维度比较大的时候, 直接通过非参数方法估计

\[\mathbb{E} [Y|A=a, C=0, L=l]
\]

是很困难的(甚至会出现positivity不满足的情况).

因此我们可以用参数模型来建模, 并用最小二乘估计参数.

13.3 Standardizing the mean outcome to the confounder distribution

实际上, 在实际估计的时候, 我们不需要估计\(\mathrm{Pr}[L=l]\), 只需通过

\[\frac{1}{n} \sum_{i=1}^n \hat{\mathbb{E}} [Y|A=a, C=0, L=l],
\]

即可.

这个等价于一种奇妙的思路, 详情回见原文.

13.4 IP weighting or standardization

当然模型变换的时候, 二者的估计值可能会有所不同, 但并没有孰优孰劣的分别.

实际上, 有一些 doubly robust estimator 可以兼用二者, 并获得一个更加鲁棒的估计器.

13.5 How seriously do we take our estimates?

Fine Point

Structural Positivity

A doubly robust estimator

Technical Point

Bootstrapping

如何估计标准差.

The bias of doubly robust estimators

\[\hat{\mathbb{E}} [Y^{a=1}]_{DR} =
\frac{1}{n}
\sum_{i=1}^n[
\hat{b}(L_i) + \frac{A_iY_i}{\hat{\pi}(L_i)} ( Y_i - \hat{b}(L_i)).
]
\]
\[b(L) = \mathbb{E} [Y|A=1, L], \\
\pi(L) = \mathrm{Pr}[A=1|L].
\]

Chapter 13 Standardization and The Parametric G-formula的更多相关文章

  1. Chapter 13. Miscellaneous PerlTk Methods PerlTk 方法杂项:

    Chapter 13. Miscellaneous PerlTk Methods PerlTk 方法杂项: 到目前为止,这本书的大部分章节 集中在特定的几个部件, 这个章节覆盖了方法和子程序 可以被任 ...

  2. 零元学Expression Blend 4 - Chapter 13 用实例了解布局容器系列-「Pathlistbox」I

    原文:零元学Expression Blend 4 - Chapter 13 用实例了解布局容器系列-「Pathlistbox」I 本系列将教大家以实做案例认识Blend 4 的布局容器,此章介绍的布局 ...

  3. Java系列,《Java核心技术 卷1》,chapter 13,集合

    13.1.2 Java类库中的集合接口和迭代器接口     删除元素,对于next和remove的调用是互相依赖的,如果调用remove之前没有调用next,则会跑出IllegalStateExcep ...

  4. Thinking in Java Chapter 13

    From Thinking in Java 4th Edition String对象是不可变的.String类中每一个看起来会修改String值的方法,实际上都是创建了一个全新的String对象,以包 ...

  5. MySQL Crash Course #06# Chapter 13. 14 GROUP BY. 子查询

    索引 理解 GROUP BY 过滤数据 vs. 过滤分组 GROUP BY 与 ORDER BY 之不成文的规定 子查询 vs. 联表查询 相关子查询和不相关子查询. 增量构造复杂查询 Always ...

  6. C++ primer chapter 13

    拷贝 赋值 销毁 拷贝构造函数 如果一个构造函数第一个参数是自身的引用,而且任何额外参数都有默认值,则此构造函数是拷贝构造函数拷贝构造函数的第一个类型必须是引用:如果参数不是引用类型,那么调用不会成功 ...

  7. C++ Primer 随笔 Chapter 13 复制控制

    1.复制控制包含的内容:复制构造函数.赋值操作符.析构函数 2.复制构造函数: a. 定义:只有单个形参,而且该形参是对本类类型的引用,这样的构造函数被成为复制构造函数 b. 适用情况: (1)根据一 ...

  8. Chapter 13 建造者模式

    建造者模式又叫生成器模式:将一个产品的内部表象与产品的生成过程分割开来,从而可以使一个建造过程生成具有不同的内部表象的产品对象. 代码: package xiao; import java.util. ...

  9. Professional C# 6 and .NET Core 1.0 - Chapter 41 ASP.NET MVC

    What's In This Chapter? Features of ASP.NET MVC 6 Routing Creating Controllers Creating Views Valida ...

随机推荐

  1. 备忘录:关于.net程序连接Oracle数据库

    目录 关于使用MSSM访问Oracle数据库 关于. net 程序中连接Oracle数据库 志铭-2021年12月7日 21:22:15 关于使用MSSM访问Oracle数据库 安装访问接口组件:Or ...

  2. Slay 全场!Erda 首次亮相 GopherChina 大会

    来源|尔达 Erda 公众号 相关视频:https://www.bilibili.com/video/BV1MV411x7Gm 2021 年 6 月 26 日,GopherChina 大会准时亮相北京 ...

  3. acquaint

    Interpersonal relationships are dynamic systems that change continuously during their existence. Lik ...

  4. 100个Shell脚本—【脚本6】拷贝目录

    [脚本6]拷贝目录 编写shell脚本,把/root/目录下的所有目录(只需要一级)拷贝到/tmp/目录下: 一.脚本 #!/bin/bash cd /root list=(`ls`) for i i ...

  5. Linux基础命令---mirror获取ftp目录

    mirror 使用lftp登录ftp服务器之后,可以使用mirror指令从服务器获取目录   1.语法       mirror [OPTS] [source [target]]   2.选项列表 选 ...

  6. Does compiler create default constructor when we write our own?

    In C++, compiler by default creates default constructor for every class. But, if we define our own c ...

  7. SpringMVC(1):SpringMVC入门

    一,MVC 概述 MVC:模型,视图,控制器,是一种软件设计规范,本质是将业务逻辑,数据,显示,分离的方式来编写代码:前后端分离 Model:数据模型,提供要展示的数据,一般我们都会把这两个分离开来. ...

  8. 实现nfs持久挂载+autofs自动挂载

    实验环境: 两台主机 node4:192.168.37.44 NFS服务器 node2:192.168.37.22 客户端 在nfs服务器,先安装nfs和rpcbind [root@node4 fen ...

  9. spring boot springMVC扩展配置 。WebMvcConfigurer ,WebMvcConfigurerAdapter

    摘要: 在spring boot中 MVC这部分也有默认自动配置,也就是说我们不用做任何配置,那么也是OK的,这个配置类就是 WebMvcAutoConfiguration,但是也时候我们想设置自己的 ...

  10. 推荐2个Mac OS X上的JSON工具

    原文:http://www.giser.net/?p=887 1 visual JSON 能够将JSON串以列表的方式展示,方便对JSON数据的解析. 2 JSONModeler 可以解析JSON串生 ...