Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\)
Link.
在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足:
- 所有格子都可以被攻击到。
- 恰好存在 \(k\) 对车可以互相攻击。
的摆放方案数,对 \(998244353\) 取模。
\(n\le2\times10^5\)。
\(\mathcal{Solution}\)
这道《蓝题》嗷,看来兔是个傻子。
从第一个条件入手,所有格子可被攻击,那就有「每行都有车」或「每列都有车」成立。不妨设每行有车,则第二个条件中的“互相攻击”仅能由同列的车满足,可以得出有车的列数为 \(n-k\)。
\(n\) 个不同行棋子放入 \(n-k\) 个不同列,方案数:
\]
若 \(k\not=0\),明显沿对角线对称摆放所有棋子得到新方案,故答案 \(\times2\)。
复杂度 \(\mathcal O(n)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
const int MAXN = 2e5, MOD = 998244353;
int n, m, fac[MAXN + 5], ifac[MAXN + 5];
inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int sqr ( const int a ) { return mul ( a, a ); }
inline int qkpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
return ret;
}
inline void init () {
fac[0] = 1;
for ( int i = 1; i <= n; ++i ) fac[i] = mul ( i, fac[i - 1] );
ifac[n] = qkpow ( fac[n], MOD - 2 );
for ( int i = n - 1; ~i; --i ) ifac[i] = mul ( i + 1, ifac[i + 1] );
}
inline int comb ( const int n, const int m ) {
return n < m ? 0 : mul ( fac[n], mul ( ifac[m], ifac[n - m] ) );
}
inline int stir ( const int n, const int m ) {
int ret = 0;
for ( int i = 0; i <= m; ++i ) {
ret = ( i & 1 ? sub : add )( ret,
mul ( comb ( m, i ), qkpow ( m - i, n ) ) );
}
return mul ( ret, ifac[m] );
}
int main () {
scanf ( "%d %d", &n, &m );
if ( m > n - 1 ) return puts ( "0" ), 0;
init ();
int ans = mul ( mul ( fac[n], ifac[m] ), stir ( n, n - m ) );
if ( m ) ans = add ( ans, ans );
printf ( "%d\n", ans );
return 0;
}
Solution -「CF 1342E」Placing Rooks的更多相关文章
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
- Solution -「CF 487E」Tourists
\(\mathcal{Description}\) Link. 维护一个 \(n\) 个点 \(m\) 条边的简单无向连通图,点有点权.\(q\) 次操作: 修改单点点权. 询问两点所有可能路 ...
随机推荐
- nvm安装vue-cli
使用nvm可以更换nodejs版本.方便不同项目的切换 1.安装nvm(本人提供版本为1.1.9,当前最新) ① 到官网自行下载 https://github.com/coreybutler/nvm- ...
- 你不得不了解的Python3.x新特性
从 3.0 到 3.8,Python 3 已经更新了一波又一波,但似乎我们用起来和 2.7 没有太大区别?以前该怎么写 2.7 的代码现在就怎么写,只不过少数表达方式变了而已.在这篇文章中,作者介绍了 ...
- hisql ORM 查询语句使用教程
HiSql 提供一个可以适合多种数据库的中间查询语法,不需要关注各个数据库的语法特性,通过HiSql写语句可以在常用的不同类型数据库中执行,且语法与Sql语境类似一看就懂一学就会 hisql.net ...
- 历时5月,Kubernetes1.19正式发布 !Ingress迎来GA,存储容量跟踪新特性
我们迎来了Kubernetes1.19,这是2020年发布的第二个版本,也是迄今为止最长的发布周期,总共持续了20周.它包括33个增强功能:12个增强功能达到稳定版,18个增强处在beta版,还有13 ...
- 浅谈xss漏洞
0x00 xss漏洞简介 XSS漏洞是Web应用程序中最常见的漏洞之一.如果您的站点没有预防XSS漏洞的固定方法, 那么很可能就存在XSS漏洞. 跨站脚本攻击是指恶意攻击者往Web页面里插入恶意Scr ...
- 【vps】教你写一个属于自己的随机图API
[vps]教你写一个自己的随机图API 前言 刚刚开始使用halo博客的时候,我就发现halo博客系统是可以使用随机图当背景的,所以也是使用了网上一些比较火的随机图API. 在上次发现了各种图片API ...
- 刷机错误ERROR:STATUS_BROM_CMD__FAIL
ERROR:STATUS_BROM_CMD_STARTCMD_FAIL window驱动没有安装好,几乎所有安装包都有问题,很难成功,成功了也很慢.这是因为之前检测到且烧写错误,然后上一次的驱动错误连 ...
- JDK原子操作类
在Atomic包里一共提供了13个类,属于4种类型的原子更新方式,分别是原子更新基本类型.原子更新数组.原子更新引用和原子更新属性(字段).Atomic包里的类基本都是使用Unsafe实现的包装类. ...
- java多态instanceof介绍
1 public static void method(Animal a) {//类型判断 2 a.eat(); 3 if(a instanceof Cat) {//instanceof:用于判断对象 ...
- AOP-底层原理
AOP(底层原理) 1,AOP底层使用动态代理 (1)有两种情况动态代理 第一种 有接口情况,使用JDK动态代理 *创建接口实现类代理对象,增强类的方法 第二种 无接口情况,使用CGLIB动态代理 * ...