正题

题目链接:https://www.luogu.com.cn/problem/P4707


题目大意

\(n\)个物品,每次生成一种物品,第\(i\)个被生成的概率是\(\frac{p_i}{m}\),求生成至少\(k\)种物品的期望次数。

\(1\leq n\leq 1000,max\{n-10,1\}\leq k\leq n,1\leq m\leq 10000\)


解题思路

求的是\(E(min_k\{S\})\),但是\(k\)很大,如果令\(k=n-k+1\)的话就是求\(E(max_k\{S\})\)了

然后就可以用\(min-max\)容斥的扩展了

\[max_k(S)=\sum_{T\in S}(-1)^{|T|-k}\binom{|T|-1}{k-1}min(T)
\]

然后\(min\)的话挺好搞的,因为这个集合中的所有物品都可以视为一个物品,所以期望就是\(\frac{m}{\sum_{i\in T}p_i}\)

然后因为显然不能暴力枚举集合,所以我们考虑\(dp\)。设\(f_{k,i,j}\)表示做到第\(k\)个物品,目前的\(\sum_{i\in T}p_i=m\),然后上面那个式子的\('k'\)的值是\(j\)时上面那个式子的和。

因为有个组合数转移起来挺麻烦的,不选的话就是\(f_{k-1,i,j}\)不再多说,但是如果选的话,那个\((-1)^{|T|-k}\)直接取反就好了,但是那个组合数的上那个也加了\(1\)。

这里我们直接用那个组合数的式子\(\binom{n}{m}=\binom{n-1}{m-1}+\binom{n-1}{m}\)。虽然上面那个式子的\(k\)是不变的,但是我们记录了其他的\(k\)的值,其实如果选的话转移就是

\[f_{k,i,j}=f_{k-1,i,j}+f_{k-1,i-p_k,j-1}-f_{k-1,i-p_{k},j}
\]

这样我们的式子就是\(O(nmk)\)的了。

然后初始化的话为了满足后面的定义,让所有的\(f_{0,0,i}=-1(i\in[1,m])\)就好了。


#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int P=998244353;
int n,k,m,f[11000][11],ans;
int power(int x,int b){
int ans=1;
while(b){
if(b&1)ans=1ll*ans*x%P;
x=1ll*x*x%P;b>>=1;
}
return ans;
}
int main()
{
scanf("%d%d%d",&n,&k,&m);k=n-k+1;
for(int p=1;p<=k;p++)f[0][p]=-1;
for(int p=1;p<=n;p++){
int x;scanf("%d",&x);
for(int i=m;i>=x;i--)
for(int j=k;j>=1;j--)
(f[i][j]+=(f[i-x][j-1]-f[i-x][j]+P)%P)%=P;
}
for(int p=1;p<=m;p++)
(ans+=1ll*f[p][k]*power(p,P-2)%P)%=P;
printf("%d\n",1ll*ans*m%P);
return 0;
}

P4707-重返现世【dp,数学期望,扩展min-max容斥】的更多相关文章

  1. 洛谷P4707 重返现世 [DP,min-max容斥]

    传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...

  2. 【题解】洛谷P4707重返现世

    在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了, ...

  3. P4707 重返现世 扩展 MinMax 容斥+DP

    题目传送门 https://www.luogu.org/problem/P4707 题解 很容易想到这是一个 MinMax 容斥的题目. 设每一个物品被收集的时间为 \(t_i\),那么集齐 \(k\ ...

  4. 洛谷 P4707 重返现世

    洛谷 P4707 重返现世 k-minimax容斥 有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T ...

  5. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  6. 洛谷P4707 重返现世(扩展MinMax容斥+dp)

    传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...

  7. Luogu P4707 重返现世 (拓展Min-Max容斥、DP)

    题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了-- 首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的--Kth Min-Ma ...

  8. 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)

    题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...

  9. Luogu P4707 重返现世

    题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...

随机推荐

  1. .net core 微服务参考文章

    网址: https://www.cnblogs.com/edisonchou/p/9124985.html Tip: 此篇已加入.NET Core微服务基础系列文章索引 一.Consul基础介绍 Co ...

  2. WPF 饼状图,柱形图,折线图 (3 饼状图)

    网址:https://www.cnblogs.com/CSSZBB/p/12746214.html 饼状图相对来说复杂一些.因为需要计算很多坐标,线来看下这个列子. 圆首先想到Ellipse.但是El ...

  3. WPF 中的 Command 命令

    <Window x:Class="CommandDemo.MainWindow" xmlns="http://schemas.microsoft.com/winfx ...

  4. SpringMVC之@ControllerAdvice

    @ControllerAdvice ,很多初学者可能都没有听说过这个注解,实际上,这是一个非常有用的注解,顾名思义,这是一个增强的 Controller.使用这个 Controller ,可以实现三个 ...

  5. win10 安装mysql5.7 【自定义安装路径】

  6. java8 lambda 表达式详解

    lambada 表达式实质上是一个匿名方法,但该方法并非独立执行,而是用于实现由函数式接口定义的唯一抽象方法 使用 lambda 表达式时,会创建实现了函数式接口的一个匿名类实例 可以将 lambda ...

  7. input text 只能输入数字 js 正则表达式

    $("#txt1").keyup(function () { $(this).val($(this).val().replace(/[^0-9.]/g, '')); }).bind ...

  8. roslaunch 启动时修改参数

    启动命令: roslaunch beginner_tutorials turtlemimic.launch arg1:=3.0 查询命令: rosparam get /param1 可以看到param ...

  9. VS2017 创建并测试 C++ dll

    生成DLL 创建工程: Create new project -> 选择Visual C++ -> Windows Desktop -> Dynamic-Link Library ( ...

  10. Java数八大据类型的拓展

    public class 数据类型拓展问题 { public static void main(String[] args) { //================================= ...