正题

题目链接:https://www.luogu.com.cn/problem/P4707


题目大意

\(n\)个物品,每次生成一种物品,第\(i\)个被生成的概率是\(\frac{p_i}{m}\),求生成至少\(k\)种物品的期望次数。

\(1\leq n\leq 1000,max\{n-10,1\}\leq k\leq n,1\leq m\leq 10000\)


解题思路

求的是\(E(min_k\{S\})\),但是\(k\)很大,如果令\(k=n-k+1\)的话就是求\(E(max_k\{S\})\)了

然后就可以用\(min-max\)容斥的扩展了

\[max_k(S)=\sum_{T\in S}(-1)^{|T|-k}\binom{|T|-1}{k-1}min(T)
\]

然后\(min\)的话挺好搞的,因为这个集合中的所有物品都可以视为一个物品,所以期望就是\(\frac{m}{\sum_{i\in T}p_i}\)

然后因为显然不能暴力枚举集合,所以我们考虑\(dp\)。设\(f_{k,i,j}\)表示做到第\(k\)个物品,目前的\(\sum_{i\in T}p_i=m\),然后上面那个式子的\('k'\)的值是\(j\)时上面那个式子的和。

因为有个组合数转移起来挺麻烦的,不选的话就是\(f_{k-1,i,j}\)不再多说,但是如果选的话,那个\((-1)^{|T|-k}\)直接取反就好了,但是那个组合数的上那个也加了\(1\)。

这里我们直接用那个组合数的式子\(\binom{n}{m}=\binom{n-1}{m-1}+\binom{n-1}{m}\)。虽然上面那个式子的\(k\)是不变的,但是我们记录了其他的\(k\)的值,其实如果选的话转移就是

\[f_{k,i,j}=f_{k-1,i,j}+f_{k-1,i-p_k,j-1}-f_{k-1,i-p_{k},j}
\]

这样我们的式子就是\(O(nmk)\)的了。

然后初始化的话为了满足后面的定义,让所有的\(f_{0,0,i}=-1(i\in[1,m])\)就好了。


#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int P=998244353;
int n,k,m,f[11000][11],ans;
int power(int x,int b){
int ans=1;
while(b){
if(b&1)ans=1ll*ans*x%P;
x=1ll*x*x%P;b>>=1;
}
return ans;
}
int main()
{
scanf("%d%d%d",&n,&k,&m);k=n-k+1;
for(int p=1;p<=k;p++)f[0][p]=-1;
for(int p=1;p<=n;p++){
int x;scanf("%d",&x);
for(int i=m;i>=x;i--)
for(int j=k;j>=1;j--)
(f[i][j]+=(f[i-x][j-1]-f[i-x][j]+P)%P)%=P;
}
for(int p=1;p<=m;p++)
(ans+=1ll*f[p][k]*power(p,P-2)%P)%=P;
printf("%d\n",1ll*ans*m%P);
return 0;
}

P4707-重返现世【dp,数学期望,扩展min-max容斥】的更多相关文章

  1. 洛谷P4707 重返现世 [DP,min-max容斥]

    传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...

  2. 【题解】洛谷P4707重返现世

    在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了, ...

  3. P4707 重返现世 扩展 MinMax 容斥+DP

    题目传送门 https://www.luogu.org/problem/P4707 题解 很容易想到这是一个 MinMax 容斥的题目. 设每一个物品被收集的时间为 \(t_i\),那么集齐 \(k\ ...

  4. 洛谷 P4707 重返现世

    洛谷 P4707 重返现世 k-minimax容斥 有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T ...

  5. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  6. 洛谷P4707 重返现世(扩展MinMax容斥+dp)

    传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...

  7. Luogu P4707 重返现世 (拓展Min-Max容斥、DP)

    题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了-- 首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的--Kth Min-Ma ...

  8. 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)

    题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...

  9. Luogu P4707 重返现世

    题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...

随机推荐

  1. 是的你没看错,HTTP3来了

    目录 简介 HTTP成长介绍 不同HTTP协议解决的问题 HTTP3和QUIC TLS1.3 解决HoL阻塞 连接的迁移 总结 简介 很多小伙伴可能还沉浸在HTTP1.1的世界无法自拔,但是时代的洪流 ...

  2. [ES6深度解析]15:模块 Module

    JavaScript项目已经发展到令人瞠目结舌的规模,社区已经开发了用于大规模工作的工具.你需要的最基本的东西之一是一个模块系统,这是一种将你的工作分散到多个文件和目录的方法--但仍然要确保你的所有代 ...

  3. 如何在WPF中定义窗体模板

    参考网址:https://www.cnblogs.com/chenxizhang/archive/2010/01/10/1643676.html可以在app.xaml中定义一个ControlTempl ...

  4. 遇到的C++ cli 转 C++ native 为C# 程序提供接口。

    接口文件 /*++ (do not edit the above line) ************************************************************* ...

  5. C# lock的语法糖原理--《.net core 底层入门》之自旋锁,互斥锁,混合锁,读写锁

    在多线程环境中,多个线程可能会同时访问同一个资源,为了避免访问发生冲突,可以根据访问的复杂程度采取不同的措施 原子操作适用于简单的单个操作,无锁算法适用于相对简单的一连串操作,而线程锁适用于复杂的一连 ...

  6. eval()函数的使用

    1.eval() 函数作用:可以接受一个字符串str作为参数,并把这个参数作为脚本代码来 执行. 2.参数情况:(1)如果参数是一个表达式,eval() 函数将执行表达式: (2) 如果参数是Java ...

  7. IDEA常用设置及推荐插件

    IDEA常用设置及推荐插件 本文主要记录IDEA的一些常用设置,IDEA与Eclipse的常用快捷键对比及推荐一些好用的插件. 基本设置 设置界面风格及修改外部UI尺寸大小 打开IDEA时设置不重新打 ...

  8. 百闻不如一试——公式图片转Latex代码

    写博客时,数学公式的编辑比较占用时间,在上一篇中详细介绍了如何在Markdown中编辑数学符号与公式. https://www.cnblogs.com/bytesfly/p/markdown-form ...

  9. Session原理、生命周期及购物车功能的实现

    在WEB开发中,服务器可以为每个用户浏览器创建一个会话对象(session对象),注意:一个浏览器独占一个session对象(默认情况下).因此,在需要保存用户数据(保存该浏览器(会话)的相关信息)时 ...

  10. Java中Scanner用法总结

    最近在做OJ类问题的时候,经常由于Scanner的使用造成一些细节问题导致程序不通过(最惨的就是网易笔试,由于sc死循环了也没发现,导致AC代码也不能通过...),因此对Scanner进行了一些总结整 ...