正题

题目链接:https://www.luogu.com.cn/problem/P7717


题目大意

求有多少个长度为\(n\)的序列\(a\)满足,都在\([0,k]\)的范围内且满足\(m\)个限制刑如:\(a_x\ xor\ a_y=z\)

\(0\leq n,m\leq 5\times 10^5,0\leq k<2^{30}\)


解题思路

首先假设有合法方案,那么对于一个位置\(a_x\)确定之后与它直接或间接限制的\(a_y\)都将被确定。

我们可以设限制为一条边,然后先\(dfs\)判断一次是否限制之间没有冲突。

然后考虑对于每个联通块我们随意找到一个位置\(x\),那么其他的点都将被表达为\(a_x\ xor\ w\)的形式。

然后我们要求找到有多少个\(a_x\)满足对于所有的\(w\)都有\(a_x\ xor\ w\leq k\)。

这个可以用\(Trie\)数来做,每次封闭的是一个子树,直接处理就好了。

时间复杂度\(O(n\log k)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#define ll long long
using namespace std;
const ll N=5e5+10,P=1e9+7;
struct node{
ll to,next,w;
}a[N<<1];
ll n,m,k,tot,ls[N],z[N];
ll cnt,t[N][2],res,ans=1;
bool v[N];stack<ll > s;
void addl(ll x,ll y,ll w){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;a[tot].w=w;
return;
}
bool dfs(ll x){
v[x]=1;s.push(z[x]);
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(v[y]){
if((z[x]^a[i].w)!=z[y])
return 1;
}
else{
z[y]=z[x]^a[i].w;
if(dfs(y))return 1;
}
}
return 0;
}
void Limit(ll &x,ll w,ll p){
if(x==-1||p<0)return;
if(!x){x=++cnt;t[x][0]=t[x][1]=0;}
if((k>>p)&1)Limit(t[x][(w>>p)&1^1],w,p-1);
else{
t[x][(w>>p)&1^1]=-1;
Limit(t[x][(w>>p)&1],w,p-1);
}
return;
}
void Count(ll x,ll L,ll R){
if(L>k)return;
if(x==-1)res-=min(R,k)-L+1;
if(x<=0)return;
ll mid=(L+R)>>1;
Count(t[x][0],L,mid);
Count(t[x][1],mid+1,R);
return;
}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&k);
for(ll i=1;i<=m;i++){
ll x,y,w;
scanf("%lld%lld%lld",&x,&y,&w);
addl(x,y,w);addl(y,x,w);
}
res=0;
for(ll i=1;i<=n;i++){
if(v[i])continue;cnt=t[0][0]=0;
if(dfs(i))return puts("0")&0;
while(!s.empty())Limit(t[0][0],s.top(),29),s.pop();
res=k+1;Count(1,0,(1<<30)-1);
ans=ans*res%P;
}
printf("%lld\n",ans);
return 0;
}

P7717-「EZEC-10」序列【Trie】的更多相关文章

  1. 「HNOI 2016」 序列

    \(Description\) 给你一个序列,每次询问一个区间,求其所有子区间的最小值之和 \(Solution\) 这里要用莫队算法 首先令\(val\)数组为原序列 我们考虑怎么由一个区间\([l ...

  2. 【LOJ】#2056. 「TJOI / HEOI2016」序列

    题解 这个我们处理出来每一位能变化到的最大值和最小值,包括自身 然后我们发现 \(f[i] = max(f[i],f[j] + 1) (mx[j] <= a[i] && a[j] ...

  3. 「HEOI2016/TJOI2016」序列

    题目链接 戳这 Solution 首先考虑最暴力的dp 我们设: \(f[i]\)表示选择\(i\)以后所能形成的满足条件的子序列的最大值 \(minx[i]\)表示\(i\)能转换为的最小值 \(m ...

  4. loj2056 「TJOI / HEOI2016」序列

    当年我还没学cdq的时候在luogu上写过树套树的代码orzzz ref #include <algorithm> #include <iostream> #include & ...

  5. 洛谷比赛 「EZEC」 Round 4

    洛谷比赛 「EZEC」 Round 4 T1 zrmpaul Loves Array 题目描述 小 Z 有一个下标从 \(1\) 开始并且长度为 \(n\) 的序列,初始时下标为 \(i\) 位置的数 ...

  6. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  7. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  8. loj #2051. 「HNOI2016」序列

    #2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na​1​​,a​2​​,⋯,a​n​​,记为 a[1: ...

  9. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

  10. 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie

    #10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...

随机推荐

  1. Spring-boot注入配置为java静态属性

    配置文件 注入静态变量 注意 类上面有:@Component注解 使用注入的静态变量 成功

  2. wpf 自定义 RadioButton.

    <Style TargetType="RadioButton" x:Key="nav"> <Setter Property="Tem ...

  3. C# 调用C++结构体

    参考网址:C#调用C/C++动态库,封装各种复杂结构体._liguo9860的专栏-CSDN博客 现在公司要做一个使用C#程序调用C++的一个DLL库,解析文件的功能.所以在网上找了一些资料.     ...

  4. .Net Core NPOI读取Excel 并转为数据实体类

    创建应用程序 这里直接创建Console程序 引用NPOI的NuGet包 PM> Install-Package NPOI -Version 2.5.1 直接Nuget包管理器添加 导入Exce ...

  5. java Math.random()生成从n到m的随机整数

    Java中Math类的random()方法可以生成[0,1)之间的随机浮点数.而double类型数据强制转换成int类型,整数部分赋值给int类型变量,小数点之后的小数部分将会丢失. 如果要生成[0, ...

  6. Mysql 中隐式转换

    案例一:条件字段函数操作 假设你现在维护了一个交易系统,其中交易记录表 tradelog 包含交易流水号(tradeid).交易员 id(operator).交易时间(t_modified)等字段.为 ...

  7. php Abstract 抽象类 与 Interface的

    一.Abstract Class 与 Interface 的构造 抽象类 Abstract Class <?php abstract class A { abstract public func ...

  8. spring动态切换数据源(一)

    介绍下spring数据源连接的源码类:| 1 spring动态切换连接池需要类AbstractRoutingDataSource的源码 2 /* 3 * Copyright 2002-2017 the ...

  9. Scan error on column index 1, name “created_at“: unsupported Scan, storing driver.Value type []uint8

    使用gorm,出现以下报错 在连接数据库时加上: parseTime=True db, err = gorm.Open(utils.Db, fmt.Sprintf("%s:%s@(%s:%s ...

  10. 高德地图——添加标记的两种方法&删除地标记的两种方法

    添加标记: 1.marker.setMap(map); 2.marker.add([marker]); 删除标记: 1.marker.setMap(null); 2 map.remove([marke ...