P4544 [USACO10NOV]Buying Feed G
part 1 暴力
不难发现有一个 $\mathcal O(K^2n)$ 的基础 dp:
$$f_{i,j+l}=\min(f_{i,j+l},f_{i-1,j}+(x_i-x_{i-1})\times j\times j+c_i\times l);$$
这其中 $f$ 代表在第 $i$ 个点已经买了 $j+l$ 个,其中当前第 $i$ 个点买了 $l$ 个,前 $i-1$ 个点买了 $j$ 个的最小价值。
这样的话可以水到 90pts,但是如果是联赛的话应该没有这么高的暴力分。
code
#include<bits/stdc++.h>
#define int short
#define N 105
using namespace std;
int E,K,f[N],n,c[N],x[N],dp[502][N],sum[N];
struct mm
{int c,x,f;}p[N];
namespace AYX
{ inline bool cmp(mm i,mm j){return i.x>j.x;}
inline short main()
{ //freopen("c.in","r",stdin);
//freopen("2.out","w",stdout);
scanf("%lld%lld%lld",&K,&E,&n);
for(int i=1;i<=n;++i)scanf("%lld%lld%lld",&p[i].x,&p[i].f,&p[i].c);
memset(dp,0x3f3f3f3f,sizeof(f));
dp[1][0]=0;
sort(p+1,p+1+n);
p[n+1].x=E;p[n+1].f=K;
for(int i=1;i<=n;++i)sum[i]=sum[i-1]+p[i].f;
for(int i=2;i<=n;++i)
for(int j=0;j<=min(K,sum[i]);++j)
for(int l=0;l<=p[i-1].f;++l)
{ if(l+j>K) braek;
dp[i][j+l]=min(dp[i][j+l],dp[i-1][j]+p[i-1].c*l+(j+l)*(j+l)*(p[i].x-p[i-1].x));
}
printf("%ldl\n",dp[n+1][K]);
return 0;
}
}
signed main()
{return AYX::main();
}
part 2 单调队列优化 dp
对式子进行转换,我们能够得到:
$$f_{i,k}=\min(f_{i,j},f_{i-1,j}+(x_i-x_{i-1})\times j\times j-c_i\times j)+c_i
\times k;$$
这样 $c_i\times j$ 会变成一个常数,式子只和 $i$ 和 $j$ 有关。
采用单调队列使复杂度降到 $\mathcal O(Kn)$ 稳稳通过。
当然还可以用二进制优化背包来降复杂度,只不过不如单调队列快。
code
#include<bits/stdc++.h>
#define int short
#define N 105
using namespace std;
int E,K,f[N],n,c[N],x[N],dp[502][N],sum[N],dui[N],head,tail;
struct mm
{int c,x,f;}p[N];
namespace AYX
{ inline bool cmp(mm i,mm j){return i.x<j.x;}
inline int calc(int i,int j)
{return dp[i-1][j]+(p[i].x-p[i-1].x)-p[i].c;}
inline short main()
{
scanf("%ldl%ldl%ldl",&K,&E,&n);
for(int i=1;i<=n;++i)scanf("%ldl%ldl%ldl",&p[i].x,&p[i].f,&p[i].c);
memset(dp,0x3f3f3f3f,sizeof(dp));
dp[0][0]=0;
sort(p+1,p+1+n);
for(int i=1;i<=n;++i)
{ head=0;tail=1;
for(int j=0;j<=K;++j)
{ int val=calc(i,j);
while(head<=tail and calc(i,dui[tail])>val)tail--;
while(head<=tail and j-p[i].f<dui[head])++head;
dui[+tail+]=j;
dp[i][j]=calc(i,dui[tali])+p[i].c*j;
}
}
printf("%ldl\n",dp[n][K]+(E-p[n].x)*K*K);
return 1;
}
}
signed main()
{return AYX::main();
}
P4544 [USACO10NOV]Buying Feed G的更多相关文章
- [USACO10NOV]Buying Feed G
part 1 暴力 不难发现有一个 $\mathcal O(K^2n)$ 的基础 dp: $$f_{i,j+l}=\min(f_{i,j+l},f_{i-1,j}+(x_i-x_{i-1})jj+c_ ...
- ACM BUYING FEED
BUYING FEED 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 Farmer John needs to travel to town to pick up ...
- 2020: [Usaco2010 Jan]Buying Feed, II
2020: [Usaco2010 Jan]Buying Feed, II Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 220 Solved: 162[ ...
- BUYING FEED
Problem F: F BUYING FEED Description Farmer John needs to travel to town to pick up K (1 <= K < ...
- 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II
洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...
- USACO Buying Feed, II
洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II 洛谷传送门 JDOJ 2671: USACO 2010 Jan Silver 2.Buying Feed, II ...
- 【P2616】 【USACO10JAN】购买饲料II Buying Feed, II
P2616 [USACO10JAN]购买饲料II Buying Feed, II 题目描述 Farmer John needs to travel to town to pick up K (1 &l ...
- P4544 [USACO10NOV]购买饲料Buying Feed
额,直接思路就dp吧.(我还想了想最短路之类的233但事实证明不行2333.....) 直入主题: 化简题意:在x轴上有n个点,坐标为xi.从原点出发,目标点为e,在途中需要收集K重量的物品,在每个点 ...
- [USACO10NOV]购买饲料Buying Feed 单调队列优化DP
题目描述 约翰开车来到镇上,他要带 KKK 吨饲料回家.运送饲料是需要花钱的,如果他的车上有 XXX 吨饲料,每公里就要花费 X2X^2X2 元,开车D公里就需要 D×X2D\times X^2D×X ...
随机推荐
- hdu1002 大数相加问题
这个题对于 几个月前的我简直是噩梦 好在磕磕绊绊终于写出来了 由于自己的问题 还被巨巨嘲讽了 1 1.#include<stdio.h> 2 2.#include<string. ...
- 并发编程之:JMM
并发编程之:JMM 大家好,我是小黑,一个在互联网苟且偷生的农民工. 上一期给大家分享了关于Java中线程相关的一些基础知识.在关于线程终止的例子中,第一个方法讲到要想终止一个线程,可以使用标志位的方 ...
- springboot中redis取缓存类型转换异常
异常如下: [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested ...
- Qt 自定义事件
Qt 自定义事件很简单,同其它类库的使用很相似,都是要继承一个类进行扩展.在 Qt 中,你需要继承的类是 QEvent. 继承QEvent类,你需要提供一个QEvent::Type类型的参数,作为自定 ...
- JS 之 每日一题 之 算法 ( 有多少小于当前数字的数字 )
给你一个数组 nums,对于其中每个元素 nums[i],请你统计数组中比它小的所有数字的数目. 换而言之,对于每个 nums[i] 你必须计算出有效的 j 的数量,其中 j 满足 j != i 且 ...
- MySQL——主从复制
---- 高可用 ---- 辅助备份 ---- 分担负载 复制是MySQL的一项功能,允许服务器将更改从一个实例复制到另一个实例. --主服务器将所有数据和结构更改记录到二进制日志中. --从属服务器 ...
- java版gRPC实战之一:用proto生成代码
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- Redis哨兵机制的实现及与SpringBoot的整合
1. 概述 前面我们聊过Redis的读写分离机制,这个机制有个致命的弱点,就是主节点(Master)是个单点,如果主节点宕掉,整个Redis的写操作就无法进行服务了. 为了解决这个问题,就需要依靠&q ...
- Devexpress gridcontrol设置列样式
<dxg:GridControl.Columns><dxg:GridColumn Header="排名" FieldName="UserRank&quo ...
- freeswitch的网关配置
vim /usr/local/freeswitch/conf/sip_profiles/external/weihu1.xml 1 <!-- 点对点式 --> 2 <!-- 3 & ...