前言:

transformer用于图像方面的应用逐渐多了起来,其主要做法是将图像进行分块,形成块序列,简单地将块直接丢进transformer中。然而这样的做法忽略了块之间的内在结构信息,为此,这篇论文提出了一种同时利用了块内部序列和块之间序列信息的transformer模型,称之为Transformer-iN-Transformer,简称TNT。

主要思想

TNT模型把一张图像分为块序列,每个块reshape为像素序列。经过线性变换可从块和像素中获得patch embedding和pixel embedding。将这两者放进堆叠的TNT block中学习。

在TNT block中由outer transformer block和inner transformer block组成。

outer transformer block负责建模patch embedding上的全局相关性,inner block负责建模pixel embedding之间的局部结构信息。通过把pixel embedding线性映射到patch embedding空间的方式来使patch embedding融合局部信息。为了保持空间信息,引入了位置编码。最后class token通过一个MLP用于分类。

通过提出的TNT模型,可以把全局和局部的结构信息建模,并提高特征表示能力。在精度和计算量方面,TNT在ImageNet和downstream 任务上有非常优异的表现。例如,TNT-S所在ImageNet top-1上在只有5.2B FLOPs的前提下实现了81.3%,比DeiT高了 1.5%。

一些细节

对照这个图,用几个公式来介绍。

MSA为Multi-head Self-Attention。

MLP为Multi Layer Perceptron。

LN为Layer Normalization。

Vec为flatten。

加号表示残差连接。

前两个公式是inner transformer block,处理块内部的信息,第三个公式是将块内部的信息通过线性映射到patch embedding空间,最后两个公式是outer transformer block,处理块之间的信息。

位置编码的方式看下面的图就足了。

模型参数量和计算量如下表所示:

Conclusion

最近把公众号(CV技术指南)所有的技术总结打包成了一个pdf,在公众号中回复关键字“技术总结”可获取。

本文来源于公众号CV技术指南的技术总结系列,更多内容请扫描文末二维码关注公众号。

CVPR2021 | 华为诺亚实验室提出Transformer in Transformer的更多相关文章

  1. 学界 | 华为诺亚方舟实验室提出新型元学习法 Meta-SGD ,在回归与分类任务中表现超群

    学界 | 华为诺亚方舟实验室提出新型元学习法 Meta-SGD ,在回归与分类任务中表现超群 机器之心发表于机器之心订阅 499 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等 ...

  2. 华为终端开放实验室Android Beta 4测试能力上线

    ​​​7月26日,Android P Beta 4发布(即Android P DP5),此版本为开发者最后一个预览版本,也预示着Android P正式版即将与大家见面. 为保证开发者在正式版本来临前做 ...

  3. 华为终端开放实验室Android P Beta 4测试能力上线

    7月26日,Android P Beta 4发布(即Android P DP5),此版本为开发者最后一个预览版本,也预示着Android P正式版即将与大家见面. 为保证开发者在正式版本来临前做好充分 ...

  4. (转)The Evolved Transformer - Enhancing Transformer with Neural Architecture Search

    The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33 ...

  5. Batch Size对神经网络训练的影响

    ​ 前言 这篇文章非常全面细致地介绍了Batch Size的相关问题.结合一些理论知识,通过大量实验,文章探讨了Batch Size的大小对模型性能的影响.如何影响以及如何缩小影响等有关内容. 本文来 ...

  6. 经典论文系列 | 缩小Anchor-based和Anchor-free检测之间差距的方法:自适应训练样本选择

    ​  前言  本文介绍一篇CVPR2020的论文,它在paperswithcode上获得了16887星,谷歌学术上有261的引用次数. 论文主要介绍了目标检测现有的研究进展.anchor-based和 ...

  7. 计算机视觉--CV技术指南文章汇总

    前言  本文汇总了过去本公众号原创的.国外博客翻译的.从其它公众号转载的.从知乎转载的等一些比较重要的文章,并按照论文分享.技术总结三个方面进行了一个简单分类.点击每篇文章标题可阅读详细内容 欢迎关注 ...

  8. 自动网络搜索(NAS)在语义分割上的应用(一)

    [摘要]本文简单介绍了NAS的发展现况和在语义分割中的应用,并且详细解读了两篇流行的work:DARTS和Auto-DeepLab. 自动网络搜索 多数神经网络结构都是基于一些成熟的backbone, ...

  9. ACNet:用于图像超分的非对称卷积网络

    编辑:Happy 首发:AIWalker Paper:https://arxiv.org/abs/2103.13634 Code:https://github.com/hellloxiaotian/A ...

随机推荐

  1. js一周时间表

    <div class="datetext"> <img class="dateLeft" src="./images/dateLef ...

  2. CentOS 7关闭firewalld启用iptables 开放端口

    在CentOS7中,有很多CentOS 6中的常用服务发生了变化. 其中iptables是其中比较大的一个.防火墙iptables被firewalld取代. 本文将介绍,如果采用systemctl关闭 ...

  3. C#使用OpenCV剪切图像中的圆形和矩形

    前言 本文主要介绍如何使用OpenCV剪切图像中的圆形和矩形. 准备工作 首先创建一个Wpf项目--WpfOpenCV,这里版本使用Framework4.7.2. 然后使用Nuget搜索[Emgu.C ...

  4. List调用toString()方法后,去除两头的中括号

    import org.apache.commons.lang.StringUtils; public class Test {    public static void main(String[] ...

  5. 扫盲贴|如何评价一款App的稳定性和质量?

    作者:友盟+移动开发专家 张文 「崩溃」与「卡顿」.「异常退出」等一样,是影响App稳定性常见的三种情况.相关数据显示,当iOS的崩溃率超过0.8%,Android的崩溃率超过0.4%的时候,活跃用户 ...

  6. WPF 基础 - 在模板中找元素

    1. 在 ControlTemplate 中寻找元素 <Window.Resources> <ControlTemplate x:Key="cTmp"> & ...

  7. Codeforces Round #574 (Div. 2) D1. Submarine in the Rybinsk Sea (easy edition) 【计算贡献】

    一.题目 D1. Submarine in the Rybinsk Sea (easy edition) 二.分析 简单版本的话,因为给定的a的长度都是定的,那么我们就无需去考虑其他的,只用计算ai的 ...

  8. 《逆向工程核心原理》——IAThook

    hook逻辑写入dll中,注入dll. #include "pch.h" #include <tchar.h> #include "windows.h&quo ...

  9. python3 byte,int,str转换

    1 # bytes 与 int 2 b=b'\x01\x02' 3 num=int.from_bytes(b,'little') 4 print('bytes转int:',num) 5 6 b1=nu ...

  10. Java中BO、DAO、DO、DTO、PO、POJO、VO的概念

    在程序开发中,经常会碰到各种专业术语,这里统一做一下解释,有遗漏或理解错误的恳请指正. BO(Business Object)业务对象 主要作用是把业务逻辑封装为一个对象,这个对象可以包括一个或多个其 ...